JAMB

Physics

Past questions

Paper Type: Objective (PT. 1-5)

NOT FOR-SALE

Our JAMB past questions (PDF) are FREE for your unlimited download. We only charge for our past questions \& ANSWERS WITH EXPLANATION which you can download NOW by clicking on the link below:

www.examministry.com

JAMB PHYSICS PAST QUESTIONS (PT.1)

PAPER TYPE: C

1. Which Question Paper Type of Physics is given to you?
A. Type A
B. Type B
C. Type C
D. Type D.
2. A carpenter on top of a roof 20.m high dropped a hammer of mass 1.5 kg and it fell freely to the ground. The kinetic energy of the hammer just before hitting the ground is \qquad $\left[\mathrm{g}=10 \mathrm{~ms}^{-2}\right]$
A. 450 J
B. 600 J
C. 150 J
D. 300 J
3. Two balls X and Y weighing $5 g$ and 50 kg respectively were thrown up vertically at the same time with a velocity of $100 \mathrm{~ms}^{-1}$. How will their positions be one second later?
A. X and Y will both be 500 m from the point of throw
B. X and Y will be 500 m from each other
C. Y will be 500 m ahead of X
D. X will be 500 m ahead of Y.
4. A man standing on a lift that is descending does not feel any weight because \qquad
A. there is no gravitational pull on the man in the lift
B. the inside of the lift is air tight
C. the lift is in vacuum
D. there is no reaction from the floor of the lift.
5.

8.0 N

The diagram above shows two vectors at right angles to each
other. The value of the resultant vector is \qquad
A. 13.0 N
B. 14.0 N
C. 10.0 N
D. 12.0 N .
6. An object of mass 2 kg moves with a velocity of $10 \mathrm{~ms}^{-1}$ round a circle of radius 4 m . Calculate the centripetal force on the object.
A. 40 N
B. 25 N
C. 100 N
D. 50 N
7. If it takes an object 3 s to fall freely to the ground from a certain height, what is the distance covered by the object? $\left[\mathrm{g}=10 \mathrm{~ms}^{-2}\right.$]
A. 60 m
B. 90 m
C. 30 m
D. 45 m .
8.

The diagrams above show the positions of a cone. The position which can be described as neutral equilibrium is represented as
A. Y and X
B. Z only
C. X only
D. Y and Z.
9. If a tube of small radius opened at both ends is placed in a liquid, the liquid will \qquad
A. rise above the liquid level if the liquid does not wet the glass
B. remain at the same level irrespective of whether the liquid wets the glass or not
C. fall below the liquid level if the liquid wets the glass
D. fall below the liquid level if the liquid does not wet the glass.
10.

I. Density of the liquid

II. Depth below the surface of the liquid
 III. Surface area of the liquid

In which of the statement above will pressure be dependent?
A. I and III only
B. I and II only
C. II and III only
D. I, II and III.

11.

I. High thermal capacity

II. High sensitivity

III. Easy readability
IV. Accuracy over a wide range of temperatures

From the statements above, the qualities of a good thermometer are
A. II, III and IV
B. I and II
C. I, II, III and IV
D. I, III and IV
12. A machine is used to lift a load of 20 N through a height of 10 m . If the efficiency of the machine is 40%, how much work is done?
A. 120 J
B. 80 J
C. 500 J
D. 300 J .
13. Which of the following could be effectively used to reduce friction?
A. Petrol
B. Kerosene
C. Grease
D. Water.
14. A copper wire was subjected to a tensile stress of 7.7×10^{7} Nm^{-2}. Calculate the tensile strain of the wire. [Young modulus $=$ $1.1 \times 10^{11} \mathrm{Nm}^{-2}$]
A. 2.2×10^{-4}
B. 2.0×10^{-5}
C. 7.0×10^{-3}
D. 7.0×10^{-4}
15. An object weighs 22 kg in water and 30 kg in air. What is the up thrust exerted by the liquid on the object? [$\mathrm{g}=10 \mathrm{~ms}^{-2}$]
A. 80 N
B. 50 N
C. 520 N
D. 220 N .
16. A block of aluminium is heated electrically by a 30 W heater. If the temperature rises by $100^{\circ} \mathrm{C}$ in 5 minutes, the heat capacity of the aluminium is \qquad
A. $200 \mathrm{JK}^{-1}$
B. $900 \mathrm{JK}^{-1}$
C. $90 \mathrm{JK}^{-1}$
D. $100 \mathrm{JK}^{-1}$
17. A perfect emitter or absorber of radiant energy is a \qquad
A. red body
B. conductor
C. black body
D. white body.
18. The phenomenon that shows that increase in pressure lowers the melting point can be observed in \qquad
A. regelation
B. sublimation
C. condensation
D. coagulation.
19. If the volume of a gas increases steadily as the temperature decreases at constant pressure, the gas obeys
\qquad
A. Charles' law
B. Graham's law
C. Boyle's law
D. pressure law.
20. Steam burn is more severe than that of boiling water because
\qquad
A. steam burn is dependent on relative humidity
B. steam burn is independent of relative humidity
C. steam possess greater heat energy per unit mass
D. water boils at a higher temperature
21. Which of the following types of waves needs a medium for propagation?
A. X-rays
B. Sound waves
C. Light waves
D. Radio waves.
22. The ground is always cold at night because the \qquad
A. atmosphere reflects the sun's energy at night
B. atmosphere absorbs the sun's energy at night
C. earth radiates heat to the atmosphere at night
D. sun no longer shines at night
23. A metal of volume $40 \mathrm{~cm}^{3}$ is heated from $30^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$, the increase in volume is \qquad [Linear expansivity of the metal= $\left.2.0 \times 10^{-5} \mathrm{~K}^{-1}\right]$
A. $0.40 \mathrm{~cm}^{3}$
B. $014 \mathrm{~cm}^{3}$
C. $0.12 \mathrm{~cm}^{3}$
D. $1.20 \mathrm{~cm}^{3}$
24.

I. Change of state

II. Diffusion

III. Radiation

IV. Osmosis

Which of the processes above can be explained using the kinetic theory?
A. I, II and IV
B. I, II, III and IV
C. I, II and III
D. I, III and IV.
25. When the human eye loses its power of accommodation, the detect is known as \qquad -
A. long-sightedness
B. short-sightedness
C. presbyopia
D. astigmatism
26. A length of wire has a frequency of 255 Hz when stretched by a force of 225 N . If the force increases to 324 N , what is the new frequency of vibration?
A. 356 Hz
B. 306 Hz
C. 512 Hz
D. 488 Hz .
27. A certain far-sighted person cannot see objects that are closer to the eye than 50 cm clearly. Determine the power of the converging lens which will enable him to see at 25 cm .
A. 0.04 D
B. 0.06 D
C. 0.02 D
D. 0.03 D .
28. Which of the following electromagnetic waves has the highest frequency?
A. X-rays
B. Ultra-violet rays
C. Radio waves
D. Infrared-rays.
29. When a red rose flower is observed in blue light, what colour does the observer see?
A. Yellow
B. Red
C. Blue
D. Magenta.
30. The eclipse of the sun occurs when the \qquad
A. moon's umbra falls on some part of the earth
B. moon is between the sun and the earth
C. earth is between the sun and the moon
D. moon is not completely hidden in the earth's shadow.
31. A cannon is fired from town X. After how long is the sound heard at a town Y 4.95 km away?
[velocity of sound in air $=333$ ms^{-1}]
A. 15 s
B. 0 s
C. 10 s
D. 12 s
32. An image in a convex lens is upright magnified 3 times. If the focal length of the lens is 15 cm , what is the object distance?
A. 14 cm
B. 10 cm
C. 25 cm
D. 26 cm .
33. The capacitance of a parallel plate capacitor is $20 \mu \mathrm{~F}$ in air and $60 \mu \mathrm{~F}$ in the presence of a dielectric. What is the dielectric constant?
A. 2.0
B. 0.3
C. 6.0
D. 3.0.
34. In the circuit below, three resistors, $2 \Omega, 4 \Omega$ and 12Ω are connected in parallel and a 12 V battery is connected across the combination. The current flowing through the 12Ω resistor is \qquad

A. 9.6 A
B. 14.4 A
C. 1.0 A
D. 3.2 A .
35. If the charge of electricity per kWh is N4, what is the cost of operating an electrical appliance rated $2.50 \mathrm{~V}, 2 \mathrm{~A}$ for 6 hours?
A. \#24
B. $\# 0.12$
C. \#12
D. \#16.
36. The correct expression for the potential at a point, distance r from a charge q, in an electric field is \qquad
A. $\frac{\mathrm{q}}{4 \pi \epsilon \mathrm{O}^{2}}$
B. $\frac{\mathrm{q}}{4 \pi \epsilon O r}$
C. $\frac{\mathrm{q}^{2}}{4 \pi \epsilon O \mathrm{r}^{2}}$
D. $\frac{\mathrm{q}^{2}}{4 \pi \epsilon O r}$
37. Three similar cells each of e.m.f 2 V and internal resistance 2 Ω are connected in parallel, the total e.m.f and total internal resistance are respectively \qquad
A. $6 \mathrm{~V}, 0.7 \Omega$
B. $6 \mathrm{~V}, 6.0 \Omega$
C. $2 \mathrm{~V}, 0.7 \Omega$
D. $2 \mathrm{~V}, 6.0 \Omega$
38. In homes, electrical appliances and lamps are
connected in parallel because
\qquad
A. less voltage will be used
B. parallel connection does not heat up the wires
C. series connection uses high voltage
D. less current will be used.
39. Two resistors 5Ω and 10Ω are arranged first in series and later in parallel to a 24 V source. The ratio of total power dissipated in the series and parallel arrangement respectively is
\qquad
A. $3: 5$
B. $5: 3$
C. $1: 50$
D. 50:1.
40. Which of the following will be applied when a metal x in electrolysis?
A. Y is the anode and very high current is used
B. X is the anode and very high current is used
C. X is the cathode and Y is the anode
D. Y is the cathode and X is the anode
41. A radioactive isotope has a decay constant of $10^{-5} \mathrm{~s}^{-1}$. Calculate its half-life.
A. $6.93 \times 10^{4} \mathrm{~s}$
B. $6.93 \times 10^{-6} \mathrm{~s}$
C. $6.93 \times 10^{-5} \mathrm{~s}$
D. $6.93 \times 10^{5} \mathrm{~s}$
42. Which of the following is a property of steel?
A. It can easily be magnetized and demagnetized
B. It cannot retain its magnetism longer than iron
C. It can be used for making temporary magnets
D. It can be used for making permanent magnets
43. If the threshold frequency for tungsten is $1.3 \times 10^{15} \mathrm{~Hz}$, what is its work function?
A. $8.85 \times 10^{-18} \mathrm{~J}$
B. $8.58 \times 10^{-19} \mathrm{~J}$
C. $8.58 \times 10^{-15} \mathrm{~J}$
D. $8.58 \times 10^{-17} \mathrm{~J}$

$$
\left[\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}\right]
$$

44. In an a.c. circuit, the ratio of r.m.s value to peak value of current is total power dissipated in the series
A. $\frac{1}{\sqrt{2}}$
B. $\sqrt{ } 2$
C. 2
D. $\frac{1}{2}$
45. Two inductors of inductances 4 H and 8 H are arranged in series and a current of 10 A is passed through them. What is the energy stored in them?
A. 250 J
B. 500 J
C. 50 J
D. 133 J .
46. Under which of the following conditions do gasses conduct electricity?
A. High pressure and high p.d
B. Low pressure and low p.d
C. Iow pressure and high p.d
D. High pressure and low p.d
47. In measuring high frequency a.c., the instrument used is the
A. hot wire ammeter
B. d.c. ammeter
C. moving coil ammeter
D. moving iron ammeter.
48. The bond between silicon and germanium is
A. electrovalent
B. covalent
C. ionic
D. dative.
49. Which of the following materials has an increase in resistance with temperature?
A. Electrolyte
B. Water
C. Metals
D. Wood.
50. The electrical properties of germination can be altered drastically by the addition of impurities. The process is referred to as \qquad
A. doping
B. saturation
C. bonding
D. amplification

JAMB PHYSICS PAST QUESTIONS (PT.2)

PAPER TYPE: PURPLE

1. Which Question paper type of physics as indicated above is given to you?
A. Type Green
B. Type Purple
C. Type Red
D. Type Yellow
2. In order to remove the error of parallax when taking measurements with a metre rule, the eye should be focused \qquad
A. slantingly towards the left on the markings
B. slantingly towards the right on the markings
C. vertically downwards on the markings
D. vertically upwards on the markings.
3. A load is pulled at a uniform speed along horizontal floor by a rope at 45° to floor.

If the force in the rope is 1500 N , what is the frictional force on the load?
A. 1524 N
B. 1350 N
C. 1260 N
D. 1061 N
4.

From the diagram above, OT is
\qquad
A. 18 N
B. 14 N
C. 5 N
D. 2 N
5.

From the velocity-time graph shown above, which of the following quantities CANNOT be determined?
A. Deceleration.
B. Initial velocity.
C. Total distance travelled.
D. Initial acceleration
6. Calculate the total distance covered by a train before coming to rest if its initial speed is $30 \mathrm{~ms}^{-1}$ with a constant retardation of $0.1 \mathrm{~ms}^{-2}$.
A. 5500 m
B. 4500 m
C. 4200 m
D. 3000 m .
7. A car starts from rest and moves with a uniform acceleration of $30 \mathrm{~ms}^{-2}$ for 20 s . Calculate the distance covered at the end of the motion.
A. 6 km
B. 12 km
C. 18 km
D. 24 km .
8. A rocket is fired from the earth's surface to a distant planet. By Newton's law of universal gravitation, the force F will \qquad
A. increase as a reduces
B. increase as G varies
C. remains constant
D. increases as r increases
9. If a freely suspended object is pulled to one side and released, it oscillates about the point of suspension because the \qquad
A. acceleration is directly proportional to the displacement
B. motion is directed away from the equilibrium point
C. acceleration is directly proportional to the square of the displacement
D. velocity is minimum at the equilibrium point.
10. An object moves in a circular path of radius 0.5 m with a speed of $1 \mathrm{~ms}^{-1}$. What is its angular velocity?
A. 8 rads $^{-1}$
B. 4 rads $^{-1}$
C. 2 rads $^{-1}$
D. $1 \mathrm{rads}^{-1}$
11.

From the diagram above, calculate the work done when the
particle moves from $x=0 m$ to x $=80 \mathrm{~m}$.
A. 1200 J
B. 2400 J
C. 6000J
D. 7000J
12.

The diagram above shows a wooden block just about to slide down an inclined plane whose inclination to the horizontal is a. The coefficient of frictional force between the block and the plane is \qquad
A. $\sin o c$
B. $\tan \mathrm{oc}$
C. $\cot \mathrm{OC}$
D. $\cos o c$
13. An object of mass 20 kg slides down an inclined plane at an www.examministry.com
angle of 30° to the horizontal. The coefficient of an active friction is \qquad
A. 0.2
B. 0.3
C. 0.5
D. 0.6
[$\mathrm{g} \approx 10 \mathrm{~ms}^{-2}$]
14. A block and tackle is used to raise a load of 25 N through a vertical distance of 30 m . What is the efficiency of the system if the work done against friction is 1500 J ? [$\mathrm{g} \approx 10 \mathrm{~ms}^{-2}$]
A. 62.5%
B. 73.3%
C. 83.3%
D. 94.3%
15. If a load of 1 kg stretches a cord by 1.2 cm , what is the force constant of the cord?
[$\mathrm{g} \approx 10 \mathrm{~ms}^{-2}$]
A. $866 \mathrm{Nm}^{-1}$
B. $833 \mathrm{Nm}^{-1}$
C. $769 \mathrm{Nm}^{-1}$
D. $667 \mathrm{Nm}^{-1}$
16. An object of volume 1 m 3 and mass 2 kg is totally immersed in a liquid of density $1 \mathrm{kgm}^{-3}$. Calculate its apparent weight.
A. 20 N
B. 10 N
C. 2 N
D. 1 N
17. The pressure at any point in a liquid at rest depends only on the
\qquad
A. depth and the density
B. mass and the volume
C. quantity and the surface area
D. surface area and the viscosity.
18. A balloon whose volume is $300 \mathrm{~m}^{3}$ is filled with hydrogen. If the density of air is $1.3 \mathrm{kgm}^{-3}$, find the up thrust on the balloon. [g $\approx 10 \mathrm{~ms}^{-2}$]
A. 3000 N
B. 3800 N
C. 3900 N
D. 4200 N
19. Clinical thermometers are examples of \qquad
A. pressure gas thermometer
B. resistance thermometer
C. alcohol thermometer
D. mercury-in-glass thermometer.
20. Two metals P and Q are heated through the same temperature difference. If the ratio of the linear expansivities of P to Q is $2: 3$ and the ratio of their lengths is 3:4 respectively, the ratio of the increase in lengths of P to Q is
A. $1: 2$
B. $2: 1$
C. $8: 9$
D. 9:8
21. $2000 \mathrm{~cm}^{3}$ of a gas is collected at $27^{\circ} \mathrm{C}$ and 700 mmHg . What is
the volume of the gas at standard temperature and pressure?
A. $1896.5 \mathrm{~cm}^{3}$
B. $1767.3 \mathrm{~cm}^{3}$
C. $1676.3 \mathrm{~cm}^{3}$
D. $1456.5 \mathrm{~cm}^{3}$
22. Calculate the temperature change when 500 J of heat is supplied to 100 g of water.
A. $12.1^{\circ} \mathrm{C}$
B. $2.1^{\circ} \mathrm{C}$
C. $1.2^{\circ} \mathrm{C}$
D. $0.1^{\circ} \mathrm{C}$
(Specific heat capacity of water $=$ 4200J $\mathrm{kg}^{-1} \mathrm{~K}^{-1}$)
23. Which of the following is NOT a factor that can increase the rate of evaporation of water in a lake?
A. Increase in the pressure of the atmosphere
B. Rise in temperature
C. Increase in the average speed of the molecules of water
D. Increase in the kinetic energy of the molecules of water.
24. The quantity of heat energy required to melt completely 1 kg of ice at $-30^{\circ} \mathrm{C}$ is \qquad
A. $4.13 \times 10^{5} \mathrm{~J}$
B. $4.13 \times 10^{5} \mathrm{~J}$
C. $3.56 \times 10^{4} \mathrm{~J}$
D. $3.56 \times 10^{2} \mathrm{~J}$
(latent heat of fusion $=3.5 \times 10^{5}$ Jkg^{-1}, specific heat capacity of ice $=2.1 \times 10^{3} \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$)
25.
I. It is a rapid, constant and irregular motion of tiny particles.
II. It gives evidence that tiny particles of matter called molecules exist.
III. It takes place only in gases.
IV. It gives evidence that molecules are in a constant state of random motion.

Which of the combinations above is correct about Brownian motion?
A. I, II and III
B. II, III and IV only
C. I, III and IV only
D. I, II and IV only
26. The equation of a wave travelling in a horizontal direction is expressed as $y=15 \sin \frac{2}{5}(60 t-x)$ what is its wavelength?
A. 60 m
B. 15 m
C. 5 m
D. 2 m
27.

From the diagram above, if the particles F is at a distance x from O to the right, the phase of the vibration will be different from that at O by \qquad
A. $\frac{2 \pi x}{\lambda}$
B. $\frac{\pi x}{\lambda}$
C. $\frac{\lambda}{2 \pi \mathrm{x}}$
D. $\frac{\lambda}{\pi x}$
28. Which of the following factors will affect the velocity of sound?
A. An increase in the pitch of the sound
B. An increase in the loudness of the sound
C. Wind travelling in the same direction of the sound
D. A change in the atmospheric pressure at constant temperature.
29. The characteristics of a vibration that determines its intensity is the \qquad
A. Frequency
B. Overtone
C. Wavelength
D. Amplitude
30. Where a man can place his face to get an enlarged image
when using a concave mirror to shave.
A. between the centre of curvature and the principle focus
B. at principle focus
C. between the principle focus and the pole
D. At the centre of the curvature
31. A pinhole camera is placed 300 m in front of a building so that the image is formed on a screen 5 cm from the pinhole. If the image is 2.5 cm high, the height of the building will be \qquad
A. 25 m
B. 50 m
C. 100 m
D. 150 m
32. The magnification of an object 2 cm tall when placed 10 cm in front of a plane mirror is \qquad
A. 6.0
B. 1.0
C. 0.7
D. 0.6
33. After reflection from the concave mirror, rays of light from the sun converges \qquad
A. At the radius of curvature
B. At the focus
C. Beyond the radius of curvature
D. Between the focus and radius of curvature
34. A glass block of thickness 10 cm is placed on an object. If an observer views the object vertically, the displacement of the object is \qquad
A. 3.33 cm
B. 5.00 cm
C. 6.67 cm
D. 8.50 cm
35.
I. Rays of light travel from a less dense medium to a denser medium
II. The angle of incidence is greater than critical angle.
III. Rays of light travel from a denser medium to a less dense medium

Which of the statements above are conditions for total internal reflection to occur?

A. I \& II only
B. I \& III only
C. II \& III only
D. II only

36. The use of lenses is NOT applicable in the \qquad
A. projector
B. human eye
C. periscope
D. telescope
37. Dispersion of white light is the ability of white light to \qquad
A. Penetrate air, water and glass
B. Move in a straight line
C. Move around corners
D. Separate to its component colours
38. A newly charged 12 V accumulator can easily start a car whereas eight new dry cells in series with an effective e.m.f. of 12 V cannot start the same car because \qquad
A. The current capacity is high
B. The current capacity is low
C. It cannot be re-charged
D. It cannot easily be connected to a car
39.

$$
\text { am }\left|\left|-\frac{1}{2}\right|\right|--||-1|-||-|
$$

Six identical cells, each of e.m.f. 2 V are connected as shown above. The effective e.m.f. of the cell is \qquad
A. OV
B. 4 V
C. 6 V
D. 12 V
40. The fuse in an electric device is always connected to the
A. Neutral side of an electric supply
B. Earth side of an electric supply
C. Live side of an electric supply
D. Terminal side of an electric supply
41. A particle carrying a charge of $1.0 \times 10^{-8} \mathrm{C}$ enters a magnetic field at $3.0 \times 10^{2} \mathrm{~ms}^{-1}$ at right angles to the field. If the force on this particle is $1.8 \times 10^{-8} \mathrm{~N}$, what is the magnitude of the field?
A. $6.0 \times 10^{-1} \mathrm{~T}$
B. $6.0 \times 10^{-2} \mathrm{~T}$
C. $6.0 \times 10^{-3} \mathrm{~T}$
D. $6.0 \times 10^{-4} \mathrm{~T}$
42. Which of the following is the correct shape of the graph of capacity reactance Xc versus frequency F for a pure capacitor in an a.c. circuit?

43. The current output form of an
a.c. source is given as $I=10$ sin ωt. The d.c. equivalent of the current is
A. 5.0 A
B. 7.1 A
C. 10.0 A
D. 14.1 A
44. A conductor of length 1 m moves with a velocity of $50 \mathrm{~ms}-1$ at an angle of 30° to the direction of a uniform magnetic field of flux density $1.5 \mathrm{Wbm}^{-2}$. What is the e.m.f. induced in the conductor?
A. 37.5 V
B. 50.5 V
C. 75.0 V
D. 80.5 V
45. The process of detecting a pin mistakenly swallowed by a child x-ray.
A. Diagnosis
B. Therapy
C. Crystallography
D. mammography
46. Which of the following particles CANNOT be deflected by both electric and magnetic fields?
A. Gamma rays
B. Alpha particles
C. Wave particles
D. Beta particles
47. A piece of radioactive material contains 1000 atoms. If its halflife is 20 seconds, the time taken for 125 atoms to remain is \qquad
A. 20 seconds
B. 40 seconds
C. 60 seconds
D. 80 seconds
48. The p-n junction diodes can act as rectifiers because they
\qquad
A. Conduct current when forward biased
B. Conduct current when reversebiased
C. Block current when forward biased
D. Conduct current in both directions
49. If a reverse-biased voltage is applied across a p-n junction, the depletion layer width is \qquad
A. Increased
B. Decreased
C. Constant
D. halved
50.

I. Small size

II. Low power requirement
III. Not easily damaged by high Temperature
IV. Highly durable

Which of the above are the advantages of semiconductors?
A. I, II and III only
B. II, III and IV only
C. I, II and IV only
D. I, II III and IV

CHECK YOUR ANSWERS

Would you like to get or confirm the correct answer(s) with explanations to any or all of these questions?

Download it NOW!

CLICK HERE

JAMB PHYSICS PAST QUESTIONS (PT.3)

PAPER TYPE: D

1. Which Question Paper Type of Physics is given to you?
A. Type D.
B. Type I.
C. Type B.
D. Type U.
2. When a brick is taken from the earth's surface to the moon, its mass \qquad
A. remains constant
B. reduces.
C. increases.
D. becomes zero.
3. The resultant of two forces is 50N. If the forces are perpendicular to each other and one of them makes an angle of 30° with the resultant, find its magnitude.
C. 43.3 N
D. 25.0 N
4. The pair of physical quantities that are scalar only are \qquad
A. volume and area
B. moment and momentum
C. length and displacement.
D. impulse and time.
5. A simple pendulum of length 0.4 m has a period of 2 s . What is the period a similar pendulum of length 0.8 m at the same place?
A. 8 s
B. 4 s
C. $2 \sqrt{ } 2 s$
D. $\sqrt{ } 2 s$
6. A train with an initial velocity of $20 \mathrm{~ms}^{-1}$ is subjected to a uniform deceleration of $2 \mathrm{~m}^{-2}$. The time required to bring the train to a complete halt is \qquad
A. 5 s .
B. 10 s .
C. 20s.
D. 40 s .
7. Calculate the apparent weight loss of a man weighing 70 kg in an elevator moving downwards with an acceleration of $1.5 \mathrm{~ms}^{-2}$.
A. 686 N .
B. 595 N .
C. 581 N .
D. 1105 N

$$
\left[\mathrm{g} \approx 10 \mathrm{~ms}^{-2}\right]
$$

8. A piece of cork floats in a liquid. What fraction of its volume will be immersed in the liquid?
A. 0.8 .
B. 0.5 .
C. 0.2.
D. 0.1.
[Density of the cork $=0.25 \mathrm{x}$ $10^{3} \mathrm{~kg}^{-3}$, density of the liquid $=$ $1.25 \times 10^{3} \mathrm{kgm}^{-3}$]
9. An object is moving with a velocity of $5 \mathrm{~ms}^{-1}$. At what height must a similar body be situated to have a potential energy equal in value with kinetic energy of the moving body?
A. 25.0 m
B. 20.0 m .
C. 1.3 m .
D. 1.0 m .
10. If a pump is capable of lifting 5000 kg of water through a vertical height of 60 m in 15 min , the power of the pump is \qquad
A. $2.5 \times 10^{5} \mathrm{~J} \mathrm{~s}^{-1}$
B. $2.5 \times 10^{4} \mathrm{Js}^{-1}$
C. $3.3 \times 10^{3} \mathrm{Js}^{-1}$
D. $3.3 \times 10^{2} \mathrm{~J} \mathrm{~s}^{-1}$
11. The coefficient of friction between two perfectly smooth surface is \qquad
A. infinity.
B. one
C. half.
D. zero.
12. What effort will a machine of efficiency 90% apply to lift a load of 180 N if its effort arm is twice as long as its load arm?
A. 80 N
B. 90 N .
C. 100 N .
D. 120 N .
13. Calculate the work done when a force of 20 N stretches a spring by 50 mm .
A. 0.5 J .
B. 1.5J.
C. 2.0J.
D. 2.5J.
14. At what depth below the sealevel would one experience a change of pressure equal to one atmosphere?
A. 0.1 m .
B. 1.0 m .
C. 10.0 m .
D. 100.0 m
[Density of sea water $=10^{13} \mathrm{~kg}^{-3}$ one atmosphere $=0.01 \times 10^{5}$

$$
\left.\mathrm{Nm}^{-2} \mathrm{~g}=10 \mathrm{~ms}^{-2}\right]
$$

15. What volume of alcohol will have same mass as $4.2 \mathrm{~m}^{-3}$ of petrol?
A. $0.8 \mathrm{~m}^{3}$.
B. $1.4 \mathrm{~m}^{3}$.
C. $3.6 \mathrm{~m}^{3}$.
D. $4.9 \mathrm{~m}^{3}$.
16. Calculate the length which corresponds to a temperature of $20^{\circ} \mathrm{C}$ if the used steam points of an ungraduated thermometer are 400 mm apart.
A. 20 mm .
B. 30 mm .
C. 60 mm
D. 80 mm .
17. A wire of length 100.0 m at $30^{\circ} \mathrm{C}$ has linear expansivity of 2 x $10^{-5} \mathrm{~K}^{-1}$. Calculate the length of
the wire at a temperature of $10^{\circ} \mathrm{C}$.
A. 100.08 m .
B. 100.04 m .
C. 99.96 m
D. 99.92 m .
18. A gas at a pressure of $10^{5} \mathrm{Nm}^{-2}$ expands from $0.6 \mathrm{~m}^{-3}$ to $1.2 \mathrm{~m}^{3}$ at constant temperature, the work done is \qquad
A. $7.0 \times 10^{6} J$.
B. $6.0 \times 10^{6} \mathrm{~J}$.
C. $6.0 \times 10^{5} \mathrm{~J}$.
D. $6.0 \times 10^{4} \mathrm{~J}$.
19. Two liquids X and Y having the same mass are supplied with the same quantity of heat. If the temperature rise in X is twice that of Y, the ratio of specific heat capacity of V to that of Y is \qquad
A. 2:1.
B. 1:2.
C. 4:1.
D. 1:4.
20. Foods cook quicker in salt water than in pure water because of the effect of \qquad
A. dissolved substances on the boiling point.
B. atmospheric pressure on the boiling point.
C. food nutrients on the thermal energy.
D. salts on the thermal conductivity of water.
21. Steam from boiling water causes more damage on the skin that does boiling water because
\qquad
A. water has a high specific heat.
B. steam has latent heat of fusion.
C. the steam is at higher temperature than the water.
D. steam brings heat more easily by convection.
22. What will happen to the boiling point of pure water when it
is heated in a place 30 m below sea level?
A. It will be more than $100^{\circ} \mathrm{C}$.
B. It will be less than $100^{\circ} \mathrm{C}$.
C. It will still be at $100^{\circ} \mathrm{C}$.
D. It will be fluctuating.
23. The rise or fall of liquid in a narrow tube is because of the
A. viscosity of the liquid.
B. surface tension of the liquid.
C. friction between the walls of the tube and the liquid.
D. osmotic pressure of the liquid.
24. The mechanism of heat transfer from one point to another through the vibration of the molecules of the medium is \qquad
A. convection.
B. conduction
C. radiation
D. diffusion
25. A wave travels through stretched strings is known as
\qquad
A. electromagnetic wave.
B. micro wave.
C. mechanical wave.
D. seismic wave.
26. A transverse wave and a longitudinal wave travelling in the same direction in a medium differ essentially in their \qquad
A. frequency.
B. amplitude.
C. direction of vibration of the particles of the medium
D. period of vibration of the particles of the medium.
27. What is the velocity of sound at $100^{\circ} \mathrm{C}$, if the velocity of sound at $0^{\circ} \mathrm{C}$ is $340 \mathrm{~ms}^{-1}$?
A. $497 \mathrm{~ms}^{-1}$
B. $440 \mathrm{~ms}^{-1}$
C. $397 \mathrm{~ms}^{-1}$
D. $240 \mathrm{~ms}^{-1}$
28. If a sonometer has a fundamental frequency of 450 Hz , what is the frequency of the fifth overtone?
A. 2700 Hz
B. 456 Hz
C. 44 Hz
D. 75 Hz
29. A man 1.5 m tall is standing 3 m in front of a pinhole camera whose distance between the hole and the screen is 0.1 m . What is the height of the image of the man on the screen?
A. 0.05 m
B. 0.15 m .
C. 0.30 m .
D. 1.00 m .
30. A ray of light passing through the centre of curvature of a concave mirror is reflected by the mirror at \qquad
A. 0°.
B. 45°.
C. 90°.
D. 180°
31. From the diagram below, calculate the incident angle i.

A. 41°.
B. 49°.
C. 55°.
D. 61°.
32. Total internal reflection will not occur when light travels from
\qquad
A. water to air.
B. water into glass.
C. glass to air.
D. glass into water.
33.

What does the diagram above represent?
A. telescope in normal use.
B. microscope in normal use.
C. telescope in abnormal use.
D. microscope in abnormal use.
34. If the linear magnification of the objective and eyepiece convex lenses of a compound microscope are 4 and 7 respectively, calculate the angular magnification of the microscope.
A. 2 .
B. 3 .
C. 11 .
D. 28 .
35. The angle of deviation of light of various colours passing through a triangular prism increases in the order \qquad
A. red \rightarrow green \rightarrow blue.
B. green \rightarrow violet \rightarrow blue.
C. blue \rightarrow red \rightarrow green.
D. blue \rightarrow green \rightarrow red.
36. Calculate the force acting on an electron of charge $1.5 \times 10^{-19} \mathrm{C}$ placed in an electric field of intensity $10^{5} \mathrm{Vm}^{-1}$.
A. $1.5 \times 10^{-11} \mathrm{~N}$
B. $1.5 \times 10^{-12} \mathrm{~N}$
C. $1.5 \times 10^{-13} \mathrm{~N}$
D. $1.5 \times 10^{-14} \mathrm{~N}$
37. Capacitors are used in the induction coil to \qquad
A. control circuits.
B. dissipate energy.
C. prevent electric sparks.
D. prevent distortion of electric fields.
38. A cell of emf 1.5 V is connected in series with a 1Ω resistor and a current of 0.3 A flows through the resistor. Find the internal resistance of the cell.
A. 4Ω.
B. 3.0Ω.
C. 1.5Ω.
D. 1.00Ω.
39. Which of the following obeys ohms law?
A. electrolytes.
B. metals.
C. diode.
D. glass.
40. A house has ten 40W and five 100W bulbs. How much will it cost the owner of the house to keep them lit for 10 hours if the cost of a unit is \#5?
A. \#90.
B. \#50.
C. \#45
D. \#40.
41. An electric device is rated 2000V, 250V. Calculate the maximum current it can take.
A. 9A.
B. 8 A .
C. 7A.
D. 6A.
42. When a charge moves through an electric circuit in the direction of an electric force, it
\qquad
A. gains both potential and kinetic energy.
B. gains potential energy and kinetic energy.
C. loses potential energy and gains kinetic energy.
D. loses both potential and kinetic energy.
43. To convert a galvanometer to voltmeter, a \qquad
A. high resistance is connected to it in series.
B. high resistance is connected to it in parallel.
C. Iow resistance is connected to it in series.
D. Iow resistance is connected to it in parallel.
44. Induced emfs are best explained using \qquad
A. Ohm's law.
B. Faraday's law.
C. Coulomb's law.
D. Lenz's law.
45. If a current of 2.5 A flows through an electrolyte for 3 hours and 1.8 g of a substance is deposited, what is the mass of the substance that will be deposited if a current of 4A flows through it for 4.8 hours?
A. 2.4 g
B. 3.2 g
C. 4.6 g .
D. 4.8 g .
46. Calculate the energy of the third level of an atom if the ground state energy is -24 eV
A. -9.20 eV .
B. -8.20 eV .
C. -2.75 eV .
D. -1.75 eV .
47. In photo-emission, the number of photoelectrons ejected per second depends on the
\qquad .
A. frequency of the beam.
B. work function of the metal.
C. threshold frequency of the metal.
D. intensity of the beam.
48. The particle nature of light is demonstrated by the \qquad
A. photoelectric effect.
B. speed of light.
C. colours of light.
D. diffraction of light.
49. The energy of a photon having a wavelength of $10^{-10} \mathrm{~m}$ is
\qquad
A. $2.0 \times 10^{-15} \mathrm{~J}$
B. $1.7 \times 10^{-13} \mathrm{~J}$
C. $2.0 \times 10^{-12} \mathrm{~J}$
D. $1.7 \times 10^{-12} \mathrm{~J}$

$$
\left(\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js} \mathrm{c}=3.0 \mathrm{x}\right.
$$

$$
\left.10^{8} \mathrm{~ms}^{-1}\right)
$$

50. The bond between silicon and germanium is \qquad
A. dative.
B. covalent.
C. trivalent.
D. ionic.

CHECK YOUR ANSWERS

Would you like to get or confirm the correct answer(s) with explanations to any or all of these questions?

Download it NOW!

CLICK HERE

JAMB PHYSICS PAST QUESTIONS (PT.4)

PAPER TYPE: F

1. Which question paper type of physics is given to you?
A. Type F
B. Type E
C. Type L
D. Type S
2. What is the least possible error encountered when taking measurement with a meter rule?
A. 0.1 mm
B. 1.0 mm
C. 0.5 mm
D. 0.2 mm
3. A quantity which requires magnitude and direction to be specified is \qquad
A. Temperature
B. Distance
C. Displacement
D. Mass
4.

I. Electrical potential

II. Torque

III. Kinetic Energy

IV. Momentum

Which of the quantities listed are vectors?
A. II and IV
B. I and II
C. I and III
D. II and III
5. Which type of motion do the wheels of a moving car undergo?
A. Vibratory and translational motion
B. Random and translational motion
C. Rotational and oscillatory motion
D. Translational and rotational motion
6. From the diagram below, the region of zero acceleration is
\qquad

A. MN
B. NS
C. SP
D. $P Q$
7. A car accelerates uniformly from rest at $3 \mathrm{~ms}^{-2}$. Its velocity after traveling a distance of 24 m is \qquad
A. $12 \mathrm{~ms}^{-1}$
B. $144 \mathrm{~ms}^{-1}$
C. $72 \mathrm{~ms}^{-1}$
D. $36 \mathrm{~ms}^{-1}$
8. Calculate the escape velocity of a satellite launched from the earth's surface if the radius of the earth is $6.4 \times 10^{6} \mathrm{~m}$
A. $25.3 \mathrm{kms}^{-1}$
B. $4.2 \mathrm{kms}^{-1}$
C. $4.0 \mathrm{kms}^{-1}$
D. $11.3 \mathrm{kms}^{-1}$
9. An object of weight 80 kg on earth is taken to a planet where acceleration due to gravity is onethird of its value on earth. The weight of the object on the planet is \qquad
A. 48 N
B. 12 N
C. 27 N
D. 36 N
10. One of the conditions necessary for an object to be in equilibrium when acted upon by a number of parallel forces is that the vector sum of the forces is
\qquad
A. Average
B. Zero
C. Negative
D. Positive
11. What happens when three coplanar non-parallel forces are in equilibrium?
A. Their lines of action are parallel.
B. They are represented in magnitude only
C. They are represented in direction only
D. Their lines of action meet at a point
12. An object of mass 20 kg is released from a height of 10 m above the ground level. The kinetic energy of the object just before it hits the ground is \qquad
A. 200J
B. 4000 J
C. 2000J
D. 500J
13. The energy in the nucleus of atoms produce heat which can be used to generate
B. Mechanical energy
C. Electrical energy
D. Potential energy
14. A machine whose efficiency is 75% is used to lift a load of 1000N. Calculate the effort put in to the machine if it has a Velocity ratio of 4 .
A. 343.32 N
B. 233.33 N
C. 333.33 N
D. 334.33 N
15. A wheel and an axle is used to raise a load whose weight is 800 N when an effort of 250 N is applied. If the radii of the wheel and axle are 800 mm and 200 mm respectively, the efficiency of the machine is \qquad
A. 90%
B. 80%
C. 85%
D. 87%

[^0]16. A force of 500 N is applied to a steel wire of cross-sectional area $0.2 \mathrm{~m}^{2}$, the tensile stress is \qquad
A. $2.5 \times 10^{4} \mathrm{Nm}^{-2}$
B. $1.0 \times 10^{2} \mathrm{Nm}^{-2}$
C. $1.0 \times 10^{3} \mathrm{Nm}^{-2}$
D. $2.5 \times 10^{3} \mathrm{Nm}^{-2}$
17.

From the diagram above, the point that represent the elastic limit is \qquad
A. Q
B. R
C. S
D. T
18. The small droplet of water that forms on the grass in early hours of the morning is \qquad
A. haul
B. mist
C. dew
D. fog
19. What is the equivalent of 20 K in Celsius scale?
A. $293^{\circ} \mathrm{C}$
B. $68^{\circ} \mathrm{C}$
C. $36^{\circ} \mathrm{C}$
D. $20^{\circ} \mathrm{C}$
20. A glass bottle of initial volume $2 \times 10^{4} \mathrm{~cm}^{3}$ is heated from $20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. If the linear expansively of glass is $9 \times 10^{-6} \mathrm{~K}^{-1}$, the volume of the bottle at $50^{\circ} \mathrm{C}$ is \qquad
A. $20016.2 \mathrm{~cm}^{3}$
B. $20005.4 \mathrm{~cm}^{3}$
C. $20008.1 \mathrm{~cm}^{3}$
D. $20013.5 \mathrm{~cm}^{3}$
21. The equation $\mathrm{Pa}_{\mathrm{a}} \mathrm{V}_{\mathrm{c}}=$ constant reduces to Charles Law if \qquad
A. $a=1, b=1$ and $c=0$
B. $a=1, b=0$ and $c=-1$
C. $a=0, b=1$ and $c=1$
D. $a=0, b=1$ and $c=-1$
22. The quantity of heat needed to raise the temperature of a body by 1 K is the body's.
A. Heat capacity
B. Internal energy
C. Specific heat capacity
D. Latent heat of fusion
23. The melting point of a substance is equivalent to its
A. Vapor Pressure
B. solidification Temperature
C. Liquidification Temperature
D. Solidification Pressures
24. The temperature at which the water vapour present in the air is just sufficient to saturate air is
A. Boiling point
B. Ice point
C. Saturation point
D. Dew point
25. Heat transfer by convection in a liquid is due to the \qquad
A. Latent heat of vaporization of the liquid
B. Increased vibration of the molecules of the liquid about their mean position
C. Variation of density of the liquid
D. Expansion of the liquid as it is heated
26. The distance between two successive crests of a wave is 15 cm and the velocity $300 \mathrm{~ms}^{-1}$. Calculate the frequency.
A. $2.0 \times 10^{2} \mathrm{~Hz}$
B. $4.5 \times 10^{3} \mathrm{~Hz}$
C. $2.0 \times 10^{3} \mathrm{~Hz}$
D. $4.5 \times 10^{2} \mathrm{~Hz}$
27. A boy receives the echo of his clap reflected by a nearby hill 0.8 s later. How far is he from the hill?
A. 528 m
B. 66 m
C. 136 m
D. 264 m
28.

The diagram above show a stationery wave of wavelength 40 cm in a closed tube. The length I is the resonating air column is
A. 10 cm
B. 20 cm
C. 30 cm
D. 40 cm
29. An object is placed 10 m from a pinhole camera of length 25 cm . Calculate the linear magnification.
A. 2.5×10^{-2}
B. 2.5×10^{-1}
C. 2.5×10^{1}
D. 2.5×10^{2}
30. The focal length of a concave mirror is 2.0 cm . If an object is placed 8.0 cm from it, the image is at \qquad
A. 2.7 m
B. 2.0 m
C. 2.3 m
D. 2.5 m
31. In a compound microscope, the objective and the eye piece focal lengths are \qquad
A. Long
B. Short
C. The same
D. At infinity
32. When a telescope is in normal use, the final image is at \qquad
A. The focus
B. The radius of curvature
C. The near point
D. Infinity
33. When a negatively charged rod is brought near the cap of a charged gold leaf electroscope which has positive charges, the leaf \qquad
A. Collapses
B. Collapses and diverges again
C. Diverges
D. Remains the same
34. What charge is stored in a 0.1 F capacitor when a 10 V supply is connected across it?
A. 1 C
B. 5 C
C. 4 C
D. 2C
35.

Calculate the effective capacitance of the circuit above
A. 1 uf
B. 2 uf
C. 3uf
D. 4uf
36. The maximum power transfer occurs in a cell when the external resistance is \qquad
A. Twice the internal resistance of the cell
B. The same as the internal resistance of the cell
C. Greater than the internal resistance of the cell
D. Less than the internal resistance of the cell
37. If a metal wire 4 m long and cross-sectional area 0.8 mm 2 has
a resistance of 60Ω, find the resistivity of the wire
A. $5.3 \times 10^{-7} \Omega \mathrm{~m}$
B. $3.0 \times 10^{-5} \Omega \mathrm{~m}$
C. $1.2 \times 10^{-6} \Omega \mathrm{~m}$
D. $3.2 \times 10^{-6} \Omega \mathrm{~m}$
38. A circuit has a resistance of 200Ω. The resistance of the circuit can be reduced to 120Ω when
\qquad
A. A 300Ω resistor is connected to it in parallel
B. An 80Ω resistor is connected to it in series
C. A 150Ω resistor is connected to it in parallel
D. A 240Ω resistor is connected to it in series
39. PHCN measures its electrical energy in \qquad
A. W
B. KWh
C. Wh
D. J
40. What is the best method of demagnetizing a steel bar magnet?
A. Hammering
B. Heating it
C. Rough handling it
D. Solenoid method
41. The magnitude of the angle of dip at the equator is \qquad
A. 360°
B. 0°
C. 90°
D. 180°

Use the diagram below to answer question 42 and 43

42. The diagram above is that of
\qquad
A. a step- up transformer
B. a step - down transformer
C. an auto transformer
D. an oil transformer
43. The electromotive force in the secondary winding is \qquad
A. increasing
B. reducing
C. Stabilizing
D. Varying
44. What type of reaction is represented by the equation ${ }^{2}{ }_{1} X+$ ${ }^{2} X \rightarrow{ }^{3}{ }_{2} Y+{ }^{1}$ on + energy?
A. Ionization
B. Fusion
C. Fission
D. Chain
45. When an atom undergoes a beta decay, the atomic number of the nucleus \qquad -
A. Remains unchanged
B. Decreases by one
C. Increases by one
D. Becomes zero
46. Calculate the mass of the copper deposited during electrolysis when a current of 4A passes through a copper salt for 2 hours.
[ece of Copper $\mathrm{z}=3.3 \times 10^{-7} \mathrm{kgC}^{-1}$]
A. $2.9 \times 10^{5} \mathrm{~kg}$
B. $9.5 \times 10^{-7} \mathrm{~kg}$
C. $9.5 \times 10^{-3} \mathrm{~kg}$
D. $2.9 \times 10^{-4} \mathrm{~kg}$
47. Which gas produces a pink coloured light in a discharge tube?
A. Mercury
B. Argon
C. Air
D. Neon
48. When ${ }^{210}{ }_{82} \mathrm{~Pb}$ decays to ${ }^{206}{ }_{80} \mathrm{~Pb}$, it emits \qquad
A. two alpha and two beta particles
B. an alpha particle
C. one beta particle
D. one alpha and one beta particle
49. In a common emitter configuration, the output voltage is through the \qquad
A. Resistor
B. Base
C. Collector
D. Emitter
50. Which of the graph below shows the characteristic of an $\mathrm{i}-\mathrm{v}$ transistor?
A.

C.

B.

D.

CHECK YOUR ANSWERS

Would you like to get or confirm the correct answer(s) with explanations to any or all of these questions?

Download it NOW!

CLICK HERE

JAMB PHYSICS PAST QUESTIONS (PT.5)

1. A piece of rubber 10 cm long stretches 6 mm when a load of 100 N is hung from it. What is the strain?
A. 6×10^{-3}
B. 6
C. 60
D. 6.0×10^{-3}
2.

Fig 1

The diagram above shows the lens arrangement in \qquad
A. compound microscope
B. a binocular
C. an astronomical
D. a periscope
3. What is the total resistance in the below diagram?

A. 5 ohms
B. 25 ohms
C. 15 ohms
D. 35 ohms
4.

A body of mass 6 kg rests on an inclined plane. The normal reaction R and the limiting frictional force is F as shown in the diagram (Fig. 2). If F is $30 N$ and $\mathrm{g}=10 \mathrm{~ms}^{-2}$, then the angle of inclination Θ is \qquad _
A. 15°
B. 60°
C. 45°
D. 30°
5. The speed of light in air is 3.0 x $10^{3} \mathrm{~ms}^{-1}$. Its speed in glass having a refractive index of 1.65 is \qquad
A. $1.82 \times 10^{8} \mathrm{~ms}^{-1}$
B. $3.00 \times 10^{8} \mathrm{~ms}^{-1}$
C. $4.95 \times 10^{8} \mathrm{~ms}^{-1}$
D. $1.65 \times 10^{8} \mathrm{~ms}^{-1}$
6. Longitudinal waves do not exhibit \qquad
A. refraction
B. polarization
C. diffraction
D. reflection
7. A device that converts sound energy into electrical energy is
A. the horn of a motor car
B. the telephone earpiece
C. a loudspeaker
D. a microphone.
8. A good calorimeter should be of \qquad
A. Iow specific heat capacity and low heat conductivity
B. high specific heat capacity and low heat conductivity
C. high specific heat capacity and low heat conductivity
D. Iow specific heat capacity and high heat conductivity.
9. Which of the following is most strongly deflected by a magnetic field?
A. β-particles
B. X -particles
C. γ-rays.
D. x-rays
10. If a beaker is filled with water, it is observed that the surface of the water is not horizontal at the glass-water interface. This behaviour is due to
A. friction
B. surface tension
C. viscosity
D. evaporation
11. A dynamo primarily conducts
\qquad
A. potential energy into kinetic energy
B. electrical energy into kinetic energy
C. mechanical energy into electrical energy
D. kinetic energy into potential energy
12.

Fig 3
A particle is injected perpendicularly into an electric field. It travels along a curved
path as depicted in the figure 3. The particle is \qquad
A. gamma ray
B. a proton
C. a neutron
D. an electron
13. In which of the following diagrams is the length of the length tube equal to one wavelength?
A.

Coss
14. A calibrated potentiometer is used to measure the e.m.f. of a cell because the \qquad
A. internal resistance of a cell is small compared with that of the potentiometer
B. potentiometer takes no current from the cell
C. potentiometer has a linear scale
D. resistance of the potentiometer is less than that of a voltmeter
15. Which of the following is a vector?
A. Electric charge
B. Electric potential difference
C. Electric field
D. Electrical capacitance.
16. The photocell works on the principle of the \qquad
A. voltaic cell
B. photographic plate
C. emission of protons by incident electrons
D. emission of electrons by incident radiation
17. When an atom loses or gains a charge, it becomes \qquad
A. an ion
B. an electron
C. a neutron
D. a proton
18. Which of the following characteristics of a wave is used in the measurement of the depth of the sea?
A. Diffraction
B. Reflection
C. Refraction
D. Interference
19. Which of the following are produced after a nuclear fusion process?
I. One heavy nucleus
II. Neutrons
III. Protons
IV. Energy

A. I and II

B. II and III
C. I and IV
D. II and IV.
20. Two similar kettles containing equal masses of boiling water are placed on a table. If the surface of one is highly polished and the surface of the other is covered
with soot, which of the following observations is correct?
A. The two kettles will cool down at the same rate
B. The polished kettle cools down more quickly by conduction
C. The kettle covered with soot cools down more quickly because it is a good radiator of heat
D. The kettle covered with soot cools down more quickly by the process of heat convection.
21. Total eclipse of the sun occurs when the \qquad
A. moon is between the sun and the earth
B. sun is between the moon and the earth
C. the earth is between the moon and the sun
D. ozone layer is threatened.
22. Which of the following pairs of colours gives the widest separation in the spectrum of white light?
A. Green and Yellow
B. Red and violet
C. Red and indigo
D. Yellow and violet.
23. Which of the following with respect to a body performing simple harmonic motion are in phase?
A. Displacement and velocity of the body
B. Displacement and force on the body
C. Velocity and acceleration of the body
D. Force acting on the body and the acceleration
24. A uniform metre rule weighing $0.5 . \mathrm{V}$ is to be pivoted on a knifeedge at the 30 cm -mark. Where will a force of 2 N be placed from the pivot to balance the metre rule?
A. 95 cm
B. 5 cm
C. 20 cm
D. 25 cm
25. A solid weighs 10.0 N in air, 6.0 N when fully immersed in water and 7.0 N when fully immersed in a certain liquid X.

Calculate the relative density of the liquid.
A. $3 / 4$
B. $4 / 3$
C. $5 / 3$
D. $7 / 10$

$$
26 .
$$

The diagram above shows a maximum and minimum thermometer divided into three portions P, Q and r. which of the
following is true about the respective content of p, q and R ?
A. Air, alcohol and mercury
B. alcohol, mercury and alcohol
C. mercury, alcohol and mercury
D. Air, mercury and alcohol
27. The process of energy production in the sun is \qquad
A. nuclear fission
B. nuclear fusion
C. electron collision
D. radioactivity decay
28. The particle is responsible for nuclear fusion in a nuclear reactor is \qquad
A. electron
B. Photon
C. proton.
D. Neutron
29. If the uncertainty in the measurement of the position of a particle is $5 \times 10^{-10} \mathrm{~m}$, the \qquad
uncertainty in the momentum of the particle is \qquad
A. $1.32 \times 10^{-24} \mathrm{Ns}$
B. $3.30 \times 10^{-44} \mathrm{Ns}$
C. $1.32 \times 10^{-44} \mathrm{Ns}$
D. $3.30 \times 10^{-24} \mathrm{Ns}$
$\left[\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J}\right]$
30. The change in volume when 450 kg of ice is completely melted is \qquad
A. 0.50 m
B. $0.45 \mathrm{~m}^{3}$
C. $4.50 \mathrm{~m}^{3}$
D. $0.05 \mathrm{~m}^{3}$
[density of ice $=900 \mathrm{kgm}^{-3}$ Density of water $=1000 \mathrm{kgm}^{-3}$]
31. When impurities are added to semiconductor, its conductivity
A. decreases
B. increases then decreases
C. decreases
D. remains constant
32. The process through which free electrons leave the hot surface of hot metal is known as
\qquad
A. photo emission
B. thermionic emission
C. photon emission
D. electron emission
33. The production of pure spectrum could easily be achieved using a \qquad
A. Triangular prism only
B. Triangular prism with two concave lens
C. Glass prism with a pin
D. Triangular prism with two convex lens.
34. A short chain is something attached to the back of a petrol tanker to \qquad
A. Conduct excess charges to the earth
B. Ensure the balancing of the tanker
C. Caution the driver when over speeding
D. Generate more friction
35. A perfect emitter or absorber of radiant energy is a \qquad
A. White body
B. Red body
C. Conductor
D. Black body
36.

Six identical cells, each of e.m.f 2 V are connected as shown above. The effective e.m.f of the cell is \qquad
A. 4 V
B. 0 V
C. 6 V
D. 12 V
37. If a pump is capable of lifting 5000 Kg of water through a vertical height of 60 m in 50
mins, the power of the pump is
\qquad
A. $2.5 \times 10^{5} \mathrm{Js}^{-1}$
B. $3.3 \times 10^{3} \mathrm{Js}^{-1}$
C. $2.5 \times 10^{4} \mathrm{Js}^{-1}$
D. $3.3 \times 10^{2} \mathrm{Js}^{-1}$
38. The distance between two successive crest of a wave is 15 cm and the velocity is $300 \mathrm{~ms}^{-1}$. Calculate the frequency.
A. $4.5 \times 10^{5} \mathrm{~Hz}$
A. $4.5 \times 10^{2} \mathrm{~Hz}$
B. $2.0 \times 10^{3} \mathrm{~Hz}$
C. $2.0 \times 10^{2} \mathrm{~Hz}$
39. An electric lamp marked $240 \mathrm{~V}, 60$ Watts is left to operate for an hour. How much energy is generated by the filament?
A. $3.86 \times 10^{5} \mathrm{~J}$
B. $2.16 \times 10^{5} \mathrm{~J}$
C. $1.80 \times 10^{4} \mathrm{~J}$
D. $3.56 \times 10^{5} \mathrm{~J}$
40. In comparing the camera and human eye, the film of the camera functions as the \qquad
A. Iris
B. Pupil
C. Retina
D. Cornea

DISCLAIMER

These are not JAMB expo questions for this year, but past questions of previous years.

You are advised to study these past questions and know their correct answers as well as how the answer to each question was gotten to be well-prepared for your JAMB exam.

Speaking of which,

Would you like to download this JAMB Physics past questions \& answers with step-by-step explanation for each correct answer?

Click on the link below...

[^0]: A. Kinetic energy

