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A B S T R A C T

Several research strands document the life-cycle impacts of lead exposure during early life. Yet 
little is known about the long-run effects of lead exposure during early life on old-age mortality 
outcomes. In this study, we employ Social Security Administration death records linked to the 
full-count 1940 census and document that birth-city lead status negatively affects later life old age 
longevity. These impacts are larger for cities with acidic water and older pipeline systems that 
allow higher lead levels to leach into drinking water. Further, we show that the impacts are 
almost exclusively concentrated on the lead status of the birth-city and not the city of residence 
later in life. An instrumental variable strategy suggests reductions in longevity associated with 
birth-city lead status of about 9.6 months. We also find education, socioeconomic standing, and 
income reductions during early adulthood as candidate mechanisms. Finally, we use WWII 
enlistment data and observe reductions in measures of cognitive ability among lead-exposed 
individuals.

1. Introduction

Following the late 19th century industrial revolution, there was a sharp rise in products that employed lead as their constituents. 
For instance, farm management specialists started using lead arsenate at unprecedented levels during the first decades of the 20th 
century. During the same period, many cities installed city-wide pipe water systems, many of which employed lead as their primary 
product or a combination of lead and other materials such as iron. Although the negative health impacts of lead were known to public 
health specialists and critics regularly argued against using lead specifically in the water system, lack of universal consensus and low 
levels of regulation and monitoring resulted in limited interventions (Hamilton, 1914; Oliver, 1914; Weston, 1900).

There is now a relatively large and established literature that points to the short-term and long-term impacts of lead exposure (Aizer 
et al., 2018; Aizer and Currie, 2019; Billings and Schnepel, 2018; Dave and Yang, 2022; Feigenbaum and Muller, 2016; Wodtke et al., 
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2022). Based on the World Health Organization’s recent reports, about 30 % of the global burden of idiopathic intellectual disability 
among children and about 4.6 % of the burden of cardiovascular disease is due to cumulative lead exposure (World Health Organi-
zation, 2021). Moreover, there are about 1 million deaths in the world annually due to lead exposure, roughly half of the total deaths 
due to known hazardous chemicals (World Health Organization, 2022). Studies suggest that prenatal exposure to lead is associated 
with higher risks of pregnancy complications (Bellinger, 2005), increases in fetal death (Roy and Edwards, 2021), higher infant 
mortality rates (Troesken, 2008), and adverse birth outcomes (Bui et al., 2022; Dave and Yang, 2022). In the long run, prenatal and 
childhood exposure to lead is associated with behavioral problems (Reyes, 2015), cognitive development (Coscia et al., 2003; Dietrich 
et al., 1991; Schnaas et al., 2006), I.Q. (Nevin, 2000), elevated blood pressure (Farzan et al., 2018), kidney functioning (Skröder et al., 
2016), crime (Feigenbaum and Muller, 2016; Reyes, 2007), educational outcomes (Miranda et al., 2007; Sorensen et al., 2019), and 
old-age Alzheimer’s disease (Eid et al., 2016).

This paper examines whether exposure to lead in drinking water during early life and childhood reduces old-age longevity. Spe-
cifically, we leverage historical variation in the materials used in municipal water infrastructure across U.S. cities, focusing on whether 
an individual’s birth city utilized lead pipes in its water delivery system. We employ Social Security Administration death records for 
male individuals linked to the full count 1940 census to examine the longevity differences between individuals born in cities with some 
lead in their pipeline water system and cities with no lead. Several factors make lead cities inherently different than non-lead cities. 
During the 19th century, lead was more expensive than its closest viable alternative, iron. On the other hand, lead has several ad-
vantages, including its higher longevity, durability, ease of use and installation, and malleability (Rabin, 2008). Therefore, cities with 
tighter budgets might choose more easily sourced alternatives. Progressive leadership of wealthier cities with better resources to invest 
in long-term infrastructures were more likely to use lead. However, in some cases, early warnings from public health experts about lead 
poisoning may have deterred its use, particularly in cities with more progressive or better-informed leadership (Thresh, 1901). Local 
authorities might consider these concerns when choosing materials for water pipelines. These selection mechanisms to employ lead in 
water systems may also act in other unobserved ways to impact population health. Therefore, any comparison between lead and 
non-lead cities is confounded by such selection mechanisms. Importantly, local authorities’ decisions to employ lead in water systems 
were largely based on the costs and availability of lead refineries and distilleries. This fact is binding, especially during the 19th 
century when transportation costs constituted a large portion of the final costs of products (Jacks et al., 2010). Therefore, access to lead 
manufacturing facilities creates variations in transportation costs, hence the likelihood of a city implementing lead pipelines. We 
follow the method developed by Feigenbaum and Muller (2016) and exploit the distance between the city and several major lead 
refineries as an instrument and examine the association between birth-city lead status and later life longevity.

We employ Social Security Administration death records for male individuals over the years 1975–2005 to the full-count 1940 
census. To infer individuals’ city of birth and early-life environment, we additionally link these records to earlier full-count censuses 
from 1900 to 1930, allowing us to observe residential histories and assign lead exposure based on birth-city water infrastructure. While 
the ordinary least squares (OLS) estimates indicate a modest reduction in longevity of approximately 0.6 months associated with early- 
life exposure to lead, our instrumental variables (IV) strategy yields substantially larger effects—suggesting a decrease in lifespan of 
about 9.7 months. These effects are primarily concentrated among white individuals. Although we find negative and sizable co-
efficients for Black individuals, the estimates are imprecise, limiting strong conclusions. Additionally, we do not observe significant 
differences in the estimated effects based on maternal literacy status, suggesting that the impact of lead exposure may operate largely 
through biological mechanisms rather than being strongly mediated by early socioeconomic environment.

We further examine heterogeneity in the effects of early-life lead exposure by water chemistry, where more acidic water is expected 
to exacerbate lead leaching and thus strengthen negative health effects (Clay et al., 2014; Feigenbaum and Muller, 2016; Troesken, 
2008). Although the estimated impact is larger in cities with acidic water—where corrosion accelerates lead leaching—the high 
standard errors and weak instrument limit the interpretability of these results. In contrast, we find more robust evidence when 
examining the age of municipal water pipelines. Cities with older pipeline systems experience significantly stronger negative effects on 
longevity, consistent with increased lead release over time due to the degradation of protective pipe coatings (Edwards and Dudi, 
2004; EPA, 2024; Renner, 2009).

We also find that the negative effects of early-life lead exposure are significantly larger in states with above-median automobile 
density in 1940. In these states, birth-city lead status is associated with a reduction in longevity of approximately 11.1 months, 
compared to small and statistically insignificant effects in states with lower car density. This heterogeneity suggests that the health 
impacts of lead in drinking water may have been compounded by concurrent exposure to airborne lead emissions, particularly from 
leaded gasoline, which was widely used during this period and contributed substantially to environmental lead burden (Hernberg, 
2000).

To explore potential mechanisms underlying the observed longevity reductions, we examine the effects of early-life lead exposure 
on intermediate outcomes measured in adulthood. Using the 1940 Census and WWII enlistment records, we find that individuals born 
in lead-exposed cities had lower educational attainment, reduced socioeconomic status, lower wage income, and diminished cognitive 
ability as measured by Army General Classification Test (AGCT) scores. Specifically, lead exposure is associated with 0.2 fewer years of 
schooling, a 29.6 % reduction in college attainment, a 14.7 % drop in wage income, and a 6.3 % decline in cognitive test scores. These 
findings suggest that impaired human capital formation is a key pathway through which early-life lead exposure affects old-age 
longevity.

The contributions of this study to the literature are threefold. First, to our knowledge, this is the first study to establish a link 
between early-life and childhood exposure to lead and old-age longevity. While the harmful effects of lead have long been recognized, 
evidence on its long-term consequences remains limited. In this context, our work adds to the literature examining both short-term and 
long-term effects of lead exposure. For example, Pilsner et al. (2009) show that prenatal lead exposure affects DNA methylation, 
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potentially increasing disease risk across the life course. Wang et al. (2017) find that higher maternal cord blood lead levels are linked 
to poorer birth outcomes, particularly among boys. Thomason et al. (2019) report that infants exposed to lead in utero have reduced 
brain connectivity, which may affect later cognitive development. Clay et al. (2019) show that children living in areas with high soil 
lead levels are more likely to experience cognitive challenges. Grönqvist et al. (2020) find that reduced lead exposure from gasoline 
phaseout in Sweden improves test scores, education, and earnings. Lee et al. (2022) use historical water pipe data to show that 
childhood lead exposure negatively affects cognition in old age, though it does not influence the rate of cognitive decline. We 
contribute to this literature by evaluating the long-term effects of lead exposure on later life longevity. We should note that longevity 
and mortality outcomes are extreme but precise measures of health. They contain more accurate information on health at older ages 
compared with other subjective measures of health. Besides, studies have suggested that longevity reflects an array of economic and 
health outcomes (Buchman et al., 2012; Chetty et al., 2016; Halpern-Manners et al., 2020; Kinge et al., 2019; Lubitz et al., 2003; 
Sunder, 2005).

Second, this paper also contributes to a broader literature that documents the relationship between exposure to various sources of 
airborne and waterborne pollution and a wide range of short- and long-run outcomes, including infant health, human capital for-
mation, labor market outcomes, and adult health (Beach et al., 2016; Brainerd and Menon, 2014; Chay and Greenstone, 2003; Currie 
et al., 2013, 2014; Ebenstein et al., 2015; Greenstone and Hanna, 2014; Grossman and Slusky, 2019; Jones, 2019; Mettetal, 2019; 
Sanders, 2012; Smith et al., 2006, 2011, 2012; Zhang and Xu, 2016). For instance, Sanders (2012) examine the effect of prenatal 
pollution exposure on test scores. He employs the space-time variation in the recession of early 1980s as a source of reduction in Total 
Suspended Particulates (TPS). He finds that a one-standard-deviation decrease in TSP is associated with 6 % of a standard-deviation 
rise in high school test scores. Fletcher and Noghanibehambari (2024) explore the effects of fetal exposure to pesticide pollution on 
old-age longevity. They exploit periodical emergence of cicadas as a source of shock to pesticide use in tree-crop-lands. They show that 
exposure to rises in pesticide use during first year of life is associated with about 2.2 months reduction in longevity. Zhang and Xu 
(2016) finds that access to treated drinking water in rural China significantly increased educational attainment among youth, raising 
completed grades of education by an average of 1.1 years. Clifford et al. (2016) find that exposure to air pollutants—especially 
traffic-related ones—is associated with neurodevelopmental delays in children and cognitive decline in older adults. Colmer and 
Voorheis (2020) examine how reductions in prenatal air pollution from the 1970 U.S. Clean Air Act had long-term intergenerational 
benefits. They find that children of parents who experienced lower in-utero exposure to air pollution were significantly more likely to 
attend college, with effects driven by improved parental resources and investments, rather than genetic inheritance. Despite the 
growing number of studies in this area, evidence on the long-term effects of lead exposure—especially in relation to later-life mor-
tality—remains limited. Our paper contributes to this ongoing line of research.

Third, this paper adds to the literature that establishes a link between early-life conditions and later-life mortality outcomes (Aizer 
et al., 2016; Barker, 1994, 1995, 1997; Barker et al., 2002; Goodman-Bacon, 2021; Hayward and Gorman, 2004; Montez et al., 2014; 
Lindeboom et al., 2010; Montez and Hayward, 2011; Noghanibehambari and Fletcher, 2021; Smith et al., 2009; Van Den Berg et al., 
2006, 2011). For instance, Van Den Berg et al. (2006) and Noghanibehambari et al. (2024) find that poor early-life economic con-
ditions are linked to higher old-age mortality. Hayward and Gorman (2004), Montez and Hayward (2011), and Smith et al. (2009)
show that family socioeconomic status in early life influences longevity. Aizer et al. (2016) find that childhood cash transfers are 
associated with increased lifespan. Lindeboom et al. (2010) highlight a connection between childhood nutrition and later-life 
longevity. Lleras-Muney (2005) and Aaronson et al. (2021) show that improvements in school resources lead to better mortality 
outcomes in later life. We contribute to this ongoing research by examining how early-life exposure to environmental toxins, spe-
cifically lead, shapes long-term survival.

This study carries significant policy relevance. With the aging water pipe system in the U.S., many cities are increasingly vulnerable 
to lead contamination in drinking water (Allaire et al., 2018). This risk has been underscored by recent crises in Flint and Newark, 
where lead leaked into urban water supplies (Dave and Yang, 2022; Grossman and Slusky, 2019). The urgency of this issue is reflected 
in recent government actions, such as allocating about 1.5 % of the $1 trillion infrastructure bill passed in November 2021 to replace 
lead pipes. Moreover, understanding the long-run costs of lead exposure is important as it justifies the relatively high social costs of 
interventions (Pfadenhauer et al., 2016).

The rest of the paper is organized as follows. Section 2 provides a review of the background. Section 3 introduces data sources. 
Section 4 discusses the empirical methods. Section 5 reviews the results. Section 5.5 presents additional analyses that complement the 
main instrumental variable approach. Section 6 provides empirical evidence on the mechanisms underlying the observed effects. 
Finally, Section 7 concludes the paper.

2. Background

2.1. Water projects

During the 19th century, there was a notable increase in the circulation of knowledge and understanding of the microbiology of 
diseases, along with a growing recognition of the relevance of ensuring clean and uncontaminated water sources for the sake of public 
health (APHA, 1926). During this period, the United States embarked on a series of ambitious water projects to address various 
challenges related to water supply and water quality. This wave of water projects was driven by a growing population, urbanization, 
immigration, and the need for better management of water resources. Building water and sewer systems became inevitable with the 
growing understanding and spread of waterborne diseases such as cholera. Cities like New York, Boston, and Chicago invested in 
large-scale water supply systems. New York City, for instance, constructed the Croton Aqueduct (completed in 1842) and expanded it 
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in the late 19th century to meet rising demand.
During these decades, the country saw diverse materials used in water pipe systems. Cast iron pipes and galvanized steel, protected 

by a zinc coating, were largely used for their durability, longevity, and resistance to corrosion. Another material in high demand for 
water pipes was lead. Several technical factors and relative advantages of lead over its alternatives made it more popular nationwide. 
Lead water pipes could be tightly sealed, reducing the probability of leaks and ensuring a consistent flow of water. They were also easy 
to install, and plumbers were familiar with their features. Other reasons were their durability, availability, and corrosion resistance. In 
many cities, an alloy of elements, including lead and iron, was used. Further, copper, brass, and clay pipes also had their roles, with 
copper gaining favor for indoor plumbing due to its corrosion resistance, while clay pipes persisted in sewer systems in some regions.

2.2. Literature review

In this section, we review the literature on the life-cycle effects of lead exposure and discuss how each outcome could operate as a 
mediatory channel between early-life lead exposure and old-age longevity.

Medical studies suggest that pollution exposures during pregnancy change epigenetic programming, which results in a distorted 
growth path of the fetus (Almond and Currie, 2011; Vaiserman, 2014). Pilsner et al. (2009) provide evidence that in-utero lead 
exposure influences genomic DNA methylation. They argue that maternal cumulative lead burden changes epigenetic programming, 
increasing infants’ life-cycle susceptibility to diseases. Dave and Yang (2022) explore the impacts of lead leakages in drinking water 
during the Newark lead-in-water crisis of 2016 on infants’ health outcomes. They find that pregnant mothers in affected neighbor-
hoods are 1.5 percentage points more likely to give birth to low birth weight infants, an increase of 18 % relative to the mean. Bui et al. 
(2022) explore the effects of de-leading racing cars’ fuel on air quality and birth outcomes. They compare mothers’ outcomes who live 
in the vicinity of the racetrack to those residing farther away and find that de-leading racing fuel is associated with about 100 g of 
additional birth weight. Wang et al. (2017) examine the association between maternal cord blood lead levels and birth outcomes. They 
find negative impacts on physical measures of health at birth that vary by gender, with the most effects concentrated among male 
infants. Several studies document the association between measures of health at birth and later-life outcomes, including mortality and 
longevity (Behrman and Rosenzweig, 2004; Black et al., 2007; Flouris et al., 2009; Maruyama and Heinesen, 2020; Royer, 2009; 
Samaras et al., 2003).

The effects of lead can be detected in infants’ later-life mental development, cognitive development, and academic achievements 
(Gould, 2009; Goyer, 1996; Hollingsworth et al., 2022; Hu et al., 2006; Miranda et al., 2007; Nevin, 2000; Schnaas et al., 2006; Wodtke 
et al., 2022; N. Zhang et al., 2013). Thomason et al. (2019) examine the impact of in-utero exposure to lead on neural connectivity. 
They use infants’ bloodspots and functional MRI data and find that lead-exposed newborns, compared with the control group reveal 
lower cross-hemisphere neural connectivity. They argue that this biological pathway can explain later-life reductions in cognitive 
ability and other regulatory functions. Clay et al. (2019) use the U.S. Census 2000 and show that 5-year-old children residing in 
counties with above-median surface soil lead contamination are more likely to have cognitive difficulties, including remembering, 
concentrating, or making decisions. Grönqvist et al. (2020) examine the impacts of life-course exposure to lead on later-life outcomes 
using the phaseout of leaded gasoline in Sweden. They find consistent and large impacts on test scores, high school completion, and 
earnings. Billings and Schnepel (2018) explore the effects of public health interventions among children with high levels of lead in 
their blood samples on their outcomes. They find that interventions such as lead remediation, nutritional assessment, and medical 
evaluations can eliminate the negative impacts on education and test scores. Sorensen et al. (2019) explore the impact of a hazard 
control program, a state and local joint effort to control the levels of lead in drinking water through the Flint water crisis, on children’s 
later-life educational outcomes. They find that the program reduces the poisoning incidence by about 70 % from the baseline prev-
alence. Moreover, they show that each percentage-point decrease in lead poisoning is associated with 0.04 standard-deviations in-
crease in math test scores. Aizer et al. (2018) use data from Rhode Island for children born between 1997–2005 to examine the effect of 
lead in blood on their test scores. They use the children’s pre-school blood samples and their third-grade reading tests. They show that 
they show that a one-unit decrease in average blood lead level is associated with about 8 % in the probability of being below proficient 
in reading. The skill developments specifically through cognitive skills and educational attainments may affect old-age longevity 
through several channels, such as increases in income, occupational choice, social relations, peer selection, and labor market outcomes 
(Buckles et al., 2016; Cutler et al., 2015; Fletcher et al., 2021; Fletcher, 2012, 2015; Fletcher and Frisvold, 2014, 2015; Fletcher and 
Marksteiner, 2017; Fletcher and Noghanibehambari, 2021; Lleras-Muney, 2022; Lleras-Muney et al., 2020, 2005; Meghir et al., 2018; 
Savelyev, 2020; Savelyev et al., 2022).

Childhood lead burden can also affect later-life health outcomes. Studies suggest that about 90 % of lead is stored in bones (Rosin, 
2009). Because bone development is disproportionately concentrated during early-life and childhood, children with more exposure 
store high amounts of lead in their bones and teeth. During old ages, when individuals face decreases in bone density, lead is released 
from bones and injected into the bloodstream. Therefore, individuals become internally exposed to lead load. Lee et al. (2022) use data 
from the Health and Retirement Study (HRS) linked with the 1940 census and examine the impact of lead burden during childhood on 
old-age cognition. They exploit the variation in cross-city differences in water pipe materials as a source of lead exposure. They find 
significant effects on later-life cognition but no effect on the rate of cognition decline. There is also suggestive evidence that childhood 
lead exposure is associated with adulthood and old-age chronic renal disease, cardiovascular diseases, blood pressure, hypertension, 
and dementia (Eid et al., 2016; Farzan et al., 2018; Lin et al., 2003; Mazumdar et al., 2012; Navas-Acien et al., 2007; Opler et al., 2004; 
Reuben, 2018; Rosin, 2009; Skröder et al., 2016). For instance, Skröder et al. (2016) employ longitudinal data from Bangladesh to 
assess the association between prenatal lead burden and children’s kidney function. They find that exposure to lead during late 
pregnancy is associated with smaller kidney volume.
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In addition to these lagged effects, several studies document the direct impact of lead exposure on contemporaneous mortality 
outcomes. For instance, Troesken (2008) uses data from the early 20th century U.S. and shows that areas with lead water pipe systems 
revealed 25–50 % higher infant mortality rates than those with non-lead water pipes. Hollingsworth and Rudik (2021) show that the 
use of leaded gasoline in automotive racing fuel raises blood lead rates of residents in the vicinity of racing tracks, and it is also 
associated with increases in elderly mortality.

3. Data sources and sample construction

The primary source of data for this study comes from Social Security Administration (SSA) Death Master Files (hereafter DMF). The 
DMF data covers death for male individuals with a social security number who died between 1975–2005. We extract DMF from the 
CenSoc Project (Goldstein et al., 2021). There are three advantages to using CenSoc-extract DMF data for the purpose of this study. 
First, the DMF is linked to the full-count 1940 census. Hence, we are able to extract and infer (as explained below) the city of birth. This 
variable is essential in examining early-life exposures that operate at a very localized level. Second, there are limited linkages between 
the 1940 census and several other longitudinal studies, such as the Health and Retirement Study, National Health and Aging Trends 
Study, Panel Study of Income Dynamics, etc. However, the resulting linked data provides a very small sample size with low power.1 In 
contrast, our analysis sample contains millions of observations, allowing us to detect statistical effects and implement heterogeneity 
analyses. Third, the linked sample has information about a wide array of family covariates and individual characteristics. We employ 
this information to search for mechanisms of impact and to implement balancing tests.

We extract data on the city-level pipeline materials from Feigenbaum and Muller (2016) and Clay et al. (2014). The data contains 
information about the primary materials used for each city’s water pipes for 553 cities across the US. In order to merge water system 
data with DMF records, we need to infer the city of birth for each individual. In so doing, we start by linking DMF records to the 
full-count 1940 census extracted from Ruggles et al. (2020). We then use cross-census linking rules provided by Price et al. (2021) to 
merge the DMF-census-linked data with historical census 1900, 1910, 1920, and 1930. Including the city information in 1940, we have 
at least one and at most five city identifiers for each individual. For instance, for a person born in 1912, we potentially can observe their 
census city in 1920, 1930, and 1940. If merging provides null results, we can only observe his 1940 geographic identifier. Therefore, 
we have between 1–3 identifiers for this cohort. We use the earliest city that is observed for each individual to use as a proxy for the city 
of birth and childhood. We then merge DMF with the city-level lead database based on inferred city-of-birth. In further analyses for 
mechanisms of impact, we also employ a subsample of data from DMF records that are linked with World War II enlistment data 
extracted from Goldstein et al. (2021). This data contains information on Army General Classification Test (AGCT) scores reported by 
enlistment agencies. The AGCT was a standardized test used by the U.S. military to measure recruits’ cognitive abilities and aptitudes 
during World War II. The AGCT score was the primary criterion for assigning enlistees to military tasks and positions. We use the AGCT 
as a measure of cognitive ability in early adulthood. Although we rely on the linkage provided by Goldstein et al. (2021), we 
acknowledge that Ferrie et al. (2012) were the first to assemble and analyze AGCT data in the context of historical environmental 
exposures.

Our analysis sample includes individuals born between 1900 and 1940 who are observed in the DMF data (death years 1975 – 
2005). As such, individuals must have survived to at least age 35 (if born in 1940) to be included in the dataset, with the minimum 
required age increasing for earlier birth cohorts. This may introduce a survival-based sample selection, which may bias our estimates if 
early-life lead exposure disproportionately affected infant or early adult mortality, as suggested by the literature (Clay et al., 2014, 
2024; Lanphear et al., 2018). If lead exposure increased mortality risks at younger ages, the affected individuals are underrepresented 
in our sample, thereby leading to conservative estimates of the true effect—i.e., our results would understate the full impact of lead 
exposure on longevity.

Fig. 1 depicts lead versus non-lead cities in the final sample. Fig. 2 illustrates a density distribution of age-at-death for individuals 
born in lead and non-lead cities. There are no visually discernible differences in the distribution of age-at-death between individuals 
born in lead versus non-lead cities. Table 1 provides summary statistics of the final sample for cities with some lead materials in their 
water system (lead cities, first panel) and cities without any lead compounds in the water system (non-lead cities, second panel). 
Individuals born in lead and non-lead cities live, on average, 874.5 (72.9) and 875.1 (72.9) months (years). The share of whites in both 
groups is quite comparable (96 %). The share of Blacks and Hispanics in lead cities (non-lead cities) is 3.5 % and 0.6 % (3.8 % and 2.2 
%), respectively. Roughly 4.8 and 3.3 % of lead and non-lead cities have acidic water. Roughly 71 % and 67 % of mothers in lead and 
non-lead cities are literate, respectively. Moreover, in the sample for mechanism analysis (middle panel), we observe quite comparable 
statistics for selected outcomes across the two groups.

In Table 2, we document several selected city-level characteristics across both lead and non-lead groups. This data is extracted from 
historical censuses 1900–1940 and interpolated linearly for inter-decennial years. On average, lead cities have a higher share of whites, 
a lower share of Blacks, a lower share of Hispanics, and a lower share of other races. Further, both groups reveal almost identical 
socioeconomic index, urbanization, literacy rate, the share of married, the share of homeowners, and the number of children under five 
years old in households.

1 For instance, Health and Retirement Study provides a linked sample of 9,654 people.
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4. Econometric method

We start our analysis by documenting cross-sectional correlations between birth-city lead status and later life longevity using the 
following ordinary least square regression: 

DAicst = α0 + α1Leadc + α2Xi + α3Zct + θst + εicst (1) 

Where the outcome is age-at-death (measured in months) of individual i born in city c in state s and year t. The variable Lead is a 
dummy that equals one if the individual is born in a lead city and zero otherwise. In X, we include race and ethnicity dummies as 
individual covariates and maternal literacy and paternal socioeconomic index dummies as parental covariates. The matrix Z contains 
birth-city level covariates listed in Table 2. The parameter θ represents birth-state-by-birth-year fixed effects that absorb cohort 
convergence in health outcomes across different states and all other time-varying state-specific shocks. Finally, ε is a disturbance term. 
We cluster standard errors at the birth-city and birth-year level to account for serial and spatial correlations in terms, respectively.

To account for selection caused by unobserved heterogeneity across cities, we employ two-stage least square estimations and 
exploit the fact that proximity to major lead refineries reduces transportation costs, which provides incentives for local authorities and 

Fig. 1. Distribution of counties in the final sample based on lead status.

Fig. 2. Density distribution of age-at-death in the final sample based on birth-city lead status.
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policymakers to consider leaded materials for water pipe systems. The primary assumption is that the location of lead refineries does 
not correlate with other characteristics of cities that may contribute to population health outcomes and that their effects operate solely 
through the availability and use of lead in water systems. This assumption plausibly holds for several reasons. The location of lead 
refineries primarily depends on proximity to lead ore deposits, such as those containing galena (the primary lead mineral), which were 
formed over geological timescale long before human settlements. Since lead smelting required significant amounts of fuel, the location 
decisions also depended on the availability of energy sources such as wood or charcoal. Further, technological improvements and new 
innovations in the energy sector and in lead processing also interacted with the location of lead refineries. For instance, the innovations 
of blast furnaces and cupellation for lead smelting during the 19th century made specific locations economically feasible to establish 
lead refineries. These factors are less likely to correlate with influences of population health and longevity.

We operationalize our two-stage least square estimation using regressions of the following form: 

Table 1 
Summary statistics.

Lead Cities Non-Lead Cities

Mean SD Mean SD

DMF-Census Data:
Death Age (Months) 874.4525 125.2236 ​ 875.0655 126.3523
Birth-year 1918.3478 9.69 ​ 1918.477 9.7149
Death Year 1991.224 8.724 ​ 1991.4034 8.7156
White .964 .1863 ​ .9585 .1995
Black .0354 .1848 ​ .0379 .1911
Hispanic .0057 .075 ​ .0219 .1465
Acidic Water .0479 .2135 ​ .0333 .1795
Log Distance to the Closest Lead Refinery 4.9128 .8197 ​ 4.0046 1.3257
Father SEI Missing .1175 .3221 ​ .1371 .3439
Father SEI below Median .4602 .4984 ​ .4399 .4964
Father SEI above Median .4222 .4939 ​ .423 .494
Mother literate .7128 .4525 ​ .6734 .469
Mother literacy missing .2297 .4206 ​ .2537 .4351
Observations 783,483 ​ 1191,919
Sample for Mechanism Analysis:
Years of Schooling 10.6018 2.83 ​ 10.7018 2.9414
Years of Schooling < 9 .2781 .4481 ​ .281 .4495
Years of Schooling < 12 .5541 .4971 ​ .545 .498
Socioeconomic index 33.4825 21.6874 ​ 35.0934 22.1391
Occupational income score 26.6185 9.2452 ​ 26.9556 9.7116
Log wage income 6.7657 .8659 ​ 6.8019 .8723
Income percentile 59.6751 31.5305 ​ 59.9709 32.0105
Observations 479,544 ​ 724,787
DMF-World War II Enlistment Data:
AGCT score 77.6849 46.1731 ​ 74.1283 48.3585
Observations 8238 ​ 13,656

Table 2 
Characteristics of lead and non-lead cities in the final sample.

Lead Cities Non-Lead Cities

Mean SD Mean SD

Population 67,846.856 137,855.76 80,095.374 380,227.22
Share of whites .937 .1097 .9092 .139
Share of Blacks .0622 .1099 .0879 .14
Share of Hispanics .0032 .0092 .0131 .0545
Share of other races .0009 .0034 .0029 .0089
Share of females .5033 .0242 .5055 .0269
Average socioeconomic index 31.4101 4.644 31.4871 4.1679
Female labor force participation rate .264 .1019 .2806 .1066
Share of married .5807 .0405 .5796 .0431
Literacy rate .7064 .3085 .722 .347
Urbanization rate .99 .08 .994 .0628
Share of institutionalized .0057 .0214 .0047 .0134
Share of homeowners .4458 .1198 .4323 .1081
Number of children less than five years old .3416 .0881 .3267 .0866
White-collar occupations per capita .0494 .0225 .0521 .024
Farmers per capita .0072 .0113 .0098 .015
Other occupations per capita .9401 .0264 .9346 .0302
Observations 9236 12,904
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Leadicst = β0 + β1LogDistRefc + β2Xi + β3Zct + γst + ϵicst (2) 

DAicst = α0 + α1
̂Leadc + α2Xi + α3Zct + θst + εicst (3) 

Eqs. (2) and (3) represent first-stage and second-stage regressions, respectively. The variable LogDistRef measures log of distance (in 
miles) to the nearest lead refinery. The parameters γ and θ are birth-state by birth-year fixed effects in first and second-stage re-
gressions, respectively. All individual, family, and city controls are as in Eq. (1).

5. Results

5.1. Compositional differences in lead and non-lead status

Certain observed and unobserved characteristics of cities may correlate with their lead status. For instance, progressive state-level 
taxation might provide additional resources that cover the extra cost of lead implementation compared with its relatively cheaper 
alternatives. Further, Public health awareness and concerns among city authorities might discourage the use of lead in pipeline 
infrastructure. These aspects could influence population health and longevity in numerous unobserved ways, confounding our cross- 
sectional estimates.

Although we acknowledge the unobserved differences between lead and non-lead cities, we are curious to what extent these two 
groups differ based on observable characteristics. In so doing, we use a city-by-year panel extracted from decennial censuses 
1900–1940 and interpolated linearly for inter-decennial years. We regress several observable characteristics on city lead status, 
conditional on state-by-year fixed effects. These results are reported in Table 3. Lead cities have, on average, a lower population, a 
higher share of whites, and a lower share of Blacks (columns 1–3). They reveal a slightly lower socioeconomic index but lower female 
labor force participation and literacy rates (columns 7, 8, and 10). Further, there are more families with children under five years in 
lead cities than in non-lead cities (column 14). Fewer white-collar occupations per population are recorded in lead cities than in non- 
lead cities (column 15). There are four noteworthy points in this table. First, the point estimates imply relatively small changes in the 
outcomes. For example, the coefficient for the share of whites corresponds to a change of approximately 0.7 % relative to the mean. 
Second, the differences are not consistent—for instance, we observe an increase in the share of whites but a decrease in literacy rates. 
Third, all point estimates in columns 6–16 are statistically insignificant. Fourth, even among the statistically significant coefficients, 

Table 3 
Differences in city-level characteristics of lead and non-lead cities.

Outcomes:

Population Share of whites Share of Blacks Share of Hispanics
(1) (2) (3) (4)

Lead − 2.4282 .0073* − 0.0068* − 0.0023***
(3.4636) (0.0041) (0.004) (0.0008)

Observations 21,799 21,799 21,799 21,799
R-Squared .0241 .8715 .8751 .4189
Mean DV 7.511 0.929 0.069 0.011
​ Share of other 

races
Share of females Socioeconomic index Female labor force participation rate

​ (5) (6) (7) (8)
Lead − 0.0005* − 0.0001 − 0.4907 − 0.0083

(0.0002) (0.0014) (0.303) (0.0052)
Observations 21,799 21,799 21,799 21,799
R-Squared .805 .4419 .3988 .8242
Mean DV 0.003 0.503 32.517 0.304
​ Share of married Literacy rate Urbanization rate Share of institutionalized
​ (9) (10) (11) (12)
Lead − 0.0013 − 0.0011 − 0.0002 .0002

(0.0032) (0.0041) (0.0011) (0.0009)
Observations 21,799 21,799 21,799 21,799
R-Squared .6466 .8959 .0374 .1
Mean DV 0.573 0.657 0.999 0.005
​ Share of 

homeowners
Number of children less than five 
years old

Employed in white-collar occupations 
per capita

Employed in all other non-farm 
occupations per capita

​ (13) (14) (15) (16)
Lead .025 .0025 − 0.0013 .002

(0.0195) (0.005) (0.0013) (0.0014)
Observations 21,799 21,799 21,799 21,799
R-Squared .5291 .75 .456 .4254
Mean DV 0.352 0.310 0.052 0.939

Notes. Standard errors, clustered on city and year, are reported in parentheses. All regressions include state-by-year fixed effects and are weighted 
using city-level population.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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the results suggest that lead cities might exhibit higher longevity due to a greater share of whites and a lower share of Blacks.
One might argue that the selection process of the final sample might add different sociodemographic and socioeconomic com-

positions among individuals born in lead versus non-lead cities, and those differences are not fully revealed by cross-city comparisons 
reported in Table 3. We address this concern by examining differences in observable characteristics of individuals in the final sample 
born in lead versus non-lead cities, conditional on birth-state by birth-year fixed effects. These results are reported in 
Appendix Table A-1. Those individuals born in lead cities are more likely to be white, less likely to be black, more likely to be from low 
socioeconomic index families, and more likely to have literate mothers (columns 1, 2, 3, and 6). However, when we compare these 
estimates relative to the mean of the outcomes, we find quite small implied changes. For instance, the implied percentage changes for 
non-Hispanic white and mother literate are 0.6 % and 1.4 %, respectively. Further, they do not point to consistent differences as we 
observe a higher share of whites but also a higher share of families with low socioeconomic status and, simultaneously, higher 
maternal literacy.

5.2. Two-stage least square estimations

We begin by presenting the correlations between birth city lead exposure status and longevity using Eq. (1) in columns 1–2 of 
Table 4. The point estimates compare the longevity of individuals born within the same census region (column 1) and within the same 
state (column 2), conditional on individual, family, and city-level covariates. Those born in cities with lead in their water pipeline 
experience roughly 0.6 months lower longevity.

The results of the first stage regressions of Eq. (2) are reported in columns 3–4 of Table 4. Doubling the distance between birth-city 
and the closest lead manufacturing refinery is associated with a 21.6 percentage points increase in the likelihood of lead status, off a 
mean of 0.39. This is a large impact, implying a 53 % increase from the baseline. The second stage regressions of Eq. (3) are reported in 
columns 5–6. The fully parameterized regression of column 6 suggests that birth-city lead status is associated with 9.7 months lower 
longevity. This is roughly 16 times larger than the OLS coefficients of column 2. Although the larger magnitude points to under-
estimated coefficients in OLS regressions, it also provides Local Average Treatment Effects (LATE). It picks up on the variations induced 
by specific locations of lead refineries and the degree to which cities in the vicinity of these refineries consider their proximity and their 
decisions about the implementation of lead in pipelines. Therefore, we should exercise caution in interpreting the results as the LATE 
coefficients only identify treatment effects among the subset of compliers.

One concern in interpreting these results is the potential violation of the exclusion restriction when using distance to refinery as an 
instrument. Refineries may have contributed to lead pollution in drinking water or air. Additionally, they were more likely to be 
constructed in areas with greater market access—such as those with higher percentages of railroads or proximity to larger cities. 
Market access, in turn, may influence city growth through improvements in land value, healthcare access, and job opportunities. Since 
these "side effects" of the distance-to-refinery instrument are also linked to health and later-life longevity, it is possible that the 
exclusion restriction does not fully hold. That is, proximity to lead refineries may influence longevity not only through their effect on 
lead pipe usage but also through other pathways such as local pollution or market access, which would compromise the instrument’s 
validity even if the first-stage relationship is strong.

To assess the extent to which these intermediary factors might bias our IV estimates, we employ the bounding approach developed 
by Conley et al. (2012). This method allows for a non-zero correlation (γ) between the instrument and the outcome. If the instrument 
perfectly satisfies the exclusion restriction, then γ equals zero. For cases where γ deviates from zero, the method generates lower and 
upper bounds for the 2SLS-IV coefficient, based on the researcher’s priors about the plausible range of γ.

To better inform our assumptions about γ, we draw on existing literature. Donaldson and Hornbeck (2016) show that railroad 
expansions in the late 19th and early 20th centuries increased agricultural land values by about 60 %. Noghanibehambari and Fletcher 
(2024) argue that the Dust Bowl of the 1930s led to a 30 % reduction in agricultural land values and a 0.85-month reduction in 
longevity for those exposed in early life. Based on this, the upper bound of the direct influence through the “market access” channel is 
approximately 1.7 months. On the lower end, in our OLS regressions with and without the IV, the coefficient changes by <0.2 months. 
Although the literature on early-life exposure to airborne lead is limited, this suggests a plausible lower bound for γ of about − 0.2. As 
shown in the bottom panel of Table 4, the resulting bounds for γ imply IV estimates ranging from approximately − 18.5 to − 4.8 
months.2

One way to understand the magnitude of the estimated effect of Table 4 is to compare it with the documented effects of other shocks 
on longevity in studies that employ similar data, time periods, historical settings, and outcomes. For instance, Noghanibehambari and 
Fletcher (2023) investigate the effects of early life exposure to the Dust Bowl of the 1930s on old-age male longevity and find a 
reduction of about 2.5 months for individuals whose fathers are farmer and have higher exposure to the topsoil erosion due to the Dust 
Bowl. Since the Dust Bowl represented an unprecedented environmental catastrophe with large and long-lasting shocks to agricultural 
income and land value, the fact that the effect of lead exposure is about 3.8 times larger than exposure to the Dust Bowl is quite 
significant and policy-relevant.

Our results are also comparable to those of other studies examining the effects of exposure to toxic substances and hazardous 
chemicals on later life outcomes. For instance, Fletcher and Noghanibehambari(2024) investigate the impacts of early-life exposure to 
agrichemicals and pesticides on later-life male longevity using the emergence of cicadas between 1920–1940 as a measure that 

2 We note that the bounding IV estimates are calculated based on the specification in column 5, which includes region-by-year fixed effects. This 
choice is primarily due to non-convergence issues encountered when using the more saturated state-by-year fixed effects model in column 6.
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increases pesticide use in the agricultural sector. They document a reduction of about one year in the longevity of those whose fathers 
are employed in the agricultural sector. This effect is comparable to the effects of lead exposure, documented in Table 4.

5.3. Heterogeneity

Table 5 reports a series of heterogeneity analyses that explore whether the estimated effects of early-life lead exposure on later-life 
longevity vary across different demographic groups and environmental conditions. To provide a clearer picture of the results across 
subsamples, we organize the findings into four panels. Panel A presents the ordinary least squares (OLS) estimates. Panel B reports the 
reduced-form estimates of the effect of the instrument—minimum distance to the nearest lead refinery—on longevity. Panel C shows 
the first-stage results, capturing the relationship between the instrument and lead exposure status. Finally, Panel D presents the second- 
stage regression results. We discuss these findings in detail below.

Heterogeneity by Age of Water Pipeline - Older pipelines are more susceptible to corrosion, and while it is true that corrosion can 
sometimes result in the formation of protective mineral scales that limit lead leaching, this protective effect is not guaranteed and 
depends on water chemistry and maintenance practices. In many historical cases—particularly in the absence of corrosion control 
treatments—aging pipes experienced degraded protective layers, leading to increased lead release over time (Edwards and Dudi, 2004; 
EPA, 2024; Renner, 2009). Our empirical strategy tests whether cities with older pipeline systems saw stronger negative effects of lead 
exposure, under the hypothesis that degradation of pipe coatings over time resulted in greater lead leaching into drinking water. We 
use the date of water system installation extracted from Baker (1897) and calculate the age of the water system based on the year of 
installation and the year the individual was born. We replicate the analysis in subsamples based on the age of the water system, 
distinguishing between cities with below-median (younger pipelines) and above-median (older pipelines) pipeline age (columns 2–3). 
We observe larger coefficients in cities with older pipelines, consistent across the OLS, reduced-form, and 2SLS estimates.

Heterogeneity by Car Density – To examine whether the health impacts of lead in water were exacerbated by concurrent exposure 
to airborne lead, we exploit variation in automobile density across states in 1940 using historical vehicle registration data from 
Rahman (2024). During this period, leaded gasoline was widely used, and emissions from vehicles were a major source of ambient lead 
exposure (Hernberg, 2000). In so doing, we stratify the sample by above- and below-median state-level car density and report the 
results in columns 4–5 of Table 5. In the subsample of states with low automobile density, we find a negative but smaller and less 
precise effect of birth-city lead status on longevity: a reduction of approximately 6 months. In contrast, in the high car density sub-
sample, the effect is much larger and statistically significant, with a reduction of about 11 months in longevity. These findings are 
consistent with the hypothesis that dual exposure—from both lead-contaminated drinking water and airborne lead emissions from 
vehicles—may have amplified the long-run health effects.

Heterogeneity by Water Chemistry – Acidic water may react with protective coatings and other oxide layers on the inner surface 
of lead pipe fixtures. Such reactions allow the materials to break down and enable lead to leach into the water supply. Acidic water can 
also corrode plumbing materials that have partial lead. The more the water is acidic, the faster the corrosion. Chemical reactions 
caused by corrosion result in the lead dissolving into the water supply. Therefore, one expects to observe higher correlations between 

Table 4 
Two-stage least square estimations of lead status on old-age longevity.

Ordinary Least Square, Outcome: Age-at-Death 
(Months)

First Stage Outcome: Lead 
Status

Second-Stage Outcome: Age-at-Death 
(Months)

(1) (2) (3) (4) (5) (6)

Log distance to the closest lead refinery ​ ​ .198*** .216*** ​ ​
​ ​ (0.007) (0.006) ​ ​

Lead − 0.506*** − 0.613*** ​ ​ − 7.729*** − 9.701***
(0.194) (0.202) ​ ​ (0.941) (0.976)

Observations 1975,402 1975,397 1975,402 1975,397 1975,402 1975,402
R-Squared .404 .405 .301 .45 .403 .404
Mean DV 874.822 874.822 0.397 0.397 874.822 874.822
First-Stage F-Statistics ​ ​ ​ ​ 825.689 1260.775
Birth region by birth-year F.E. ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓ ✓ ✓
Birth-state by birth-year F.E. ​ ✓ ​ ✓ ​ ✓
Bounding IV Estimates of Conley et al. (2012) ​ ​
Range of γ Lower Bound Upper Bound ​ ​ ​ ​
[0,0] − 9.5 − 5.8 ​ ​ ​ ​
[− 0.1,0.1] − 10.1 − 5.4 ​ ​ ​ ​
[− 0.3,0.3] − 11.1 − 4.4 ​ ​ ​ ​
[− 0.6,0.6] − 12.7 − 2.9 ​ ​ ​ ​
[− 0.9,0.9] − 14.2 − 1.4 ​ ​ ​ ​
[− 0.2,1.7] − 18.5 − 4.8 ​ ​ ​ ​

Notes. Standard errors, clustered on birth-city and birth-year, are reported in parentheses. Controls include dummies for race and ethnicity, dummies 
for paternal socioeconomic index, dummies for maternal literacy, and birth-city covariates, including average socioeconomic index, female labor 
force participation rate, share of married, literacy rate, average occupational prestigious score, urbanization rate, and share of females.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 5 
Heterogeneity analysis.

Full 
Sample

Younger 
Pipeline

Older 
Pipeline

Above- 
Median Car 
Density in 
1940

Below- 
Median Car 
Density in 
1940

Non-Acidic 
Water

Acidic 
Water

Nonwhite White Illiterate 
mothers

Literate 
mothers

Third-Higher 
Generation 
Immigrant

Second 
Generation 
Immigrant

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Panel A. OLS, Outcome: Age-at-Death (Months)
Lead − 0.613*** − 0.232 − 1.581*** − 1.749*** .828*** − 0.938*** .571 1.645* − 0.682*** − 0.142 − 0.802*** − 0.091 − 0.853***

(0.202) (0.29) (0.294) (0.342) (0.231) (0.229) (0.472) (0.952) (0.206) (0.322) (0.231) (0.299) (0.247)
Observations 1975,397 958,386 1017,005 883,376 1092,021 1701,150 274,245 77,583 1897,695 614,257 1361,014 626,663 1348,670
R-Squared .405 .29 .292 .402 .407 .406 .399 .447 .4 .493 .274 .358 .348
Panel B. Reduced Form, Outcome: Age-at-Death (Months)
Log Minimum 

Distance 
to 
Refinery

− 2.1*** − 1.799*** − 2.805*** − 2.845*** − 0.156 − 2.301*** 2.893*** − 0.748 − 2.141*** − 2.001*** − 2.137*** − 1.182*** − 2.471***

​ (0.205) (0.255) (0.381) (0.289) (0.275) (0.212) (0.718) (0.853) (0.208) (0.26) (0.234) (0.258) (0.222)
Observations 1975,397 958,386 1017,005 883,376 1092,021 1701,150 274,245 77,583 1897,695 614,257 1361,014 626,663 1348,670
R-Squared .405 .29 .292 .402 .407 .406 .399 .447 .4 .494 .275 .358 .348
Panel C. First Stage Outcome: Lead
Log Minimum 

Distance 
to 
Refinery

.216*** .195*** .264*** .244*** .025** .228*** − 0.028 .175*** .218*** .216*** .219*** .207*** .219***
(0.006) (0.009) (0.009) (0.007) (0.01) (0.006) (0.031) (0.009) (0.006) (0.006) (0.007) (0.007) (0.007)

Observations 1975,397 958,386 1017,005 883,376 1092,021 1701,150 274,245 77,583 1897,695 614,257 1361,014 626,663 1348,670
R-Squared .45 .435 .563 .485 .365 .529 .422 .5 .449 .464 .445 .408 .473
Panel D. Second Stage Outcome: Age-at-Death (Months)
Lead − 9.701*** − 9.2*** − 10.639*** − 11.655*** − 6.133 − 10.08*** − 102.48 − 4.281 − 9.814*** − 9.26*** − 9.737*** − 5.717*** − 11.265***

(0.977) (1.29) (1.573) (1.347) (10.911) (0.982) (115.918) (4.895) (0.984) (1.253) (1.094) (1.228) (1.078)
Observations 1975,397 958,386 1017,005 883,376 1092,021 1701,150 274,245 77,583 1897,695 614,257 1361,014 626,663 1348,670
Test of Equality of Coefficients in the Two Subsamples:
χ2 ​ 4.84 44.94 48.23 2.68 0.25 29.45
prob > χ2 ​ 0.02 0.00 0.00 0.10 0.62 0.00

Notes. Standard errors, clustered on birth-city and birth-year, are reported in parentheses. All regressions include birth-state by birth-year fixed effects and individual/family/city controls. Controls 
include dummies for race and ethnicity, dummies for paternal socioeconomic index, dummies for maternal literacy, and birth-city covariates, including average socioeconomic index, female labor force 
participation rate, share of married, literacy rate, average occupational prestigious score, urbanization rate, and share of females.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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lead status and health outcomes in cities with more acidic water if the negative associations are driven by lead exposure (Ferrie et al., 
2012; Kim et al., 2011). This method of identifying the effects of lead exposure has been employed in previous studies across various 
contexts (Clay et al., 2014; Feigenbaum and Muller, 2016; Troesken, 2008). We use city-level pH data in 1954 reported by Lohr and 
Love (1954a) and Lohr and Love (1954b) to infer whether the water is acidic (i.e., pH<7). We then stratify the sample based on acidic 
versus non-acidic water and replicate the analysis. These results are reported in columns 6–7 of Table 5. Although the overall 2SLS 
coefficient for cities with acidic water is substantially large, the large standard errors limit any meaningful interpretation or com-
parison. Moreover, the small and statistically insignificant coefficient in the first-stage regression suggests that the instrument does not 
perform well in this subsample.

Sociodemographic Heterogeneity – In columns 8–9 of Table 5, we examine the heterogeneity in two-stage least square esti-
mations based on race. Among whites, we observe a reduction of 9.8 months in longevity. However, we observe an insignificant 
decrease of 3.8 months among Blacks. Additionally, we cannot statistically rule out the difference between the coefficients of columns 
8 and 9.

Between 1900–1940, black infant mortality rates were substantially higher than white infant mortality rates (Eriksson et al., 2018). 
Additionally, there is evidence that lead exposure during the early decades of the 20th century in the U.S. was associated with increases 
in infant mortality rates (Clay et al., 2014). Further, there is evidence that at considerably high infant mortality regimes, selection 
pressures dominate scarring effects to influence long-term outcomes (Bozzoli et al., 2009; Nobles and Hamoudi, 2019). Therefore, one 
argument for the smaller association among Blacks is that the higher infant mortality regime experienced by Blacks during this period 
enables a degree of selection dominance over scarring, hence the overall impact becomes smaller than that of whites who experience 
lower selection pressures.

Moreover, we observe quite comparable coefficients among individuals with literate and illiterate mothers (columns 10–11). This 
fact suggests that lead-longevity associations are possibly primarily driven by biological mechanisms and reveal a lower degree of 
interaction with other social determinants of health.

Heterogeneity by Immigrant Generational Status – In the next two columns, we stratify the sample based on immigrant 
generational status. Specifically, we separate second-generation immigrants—individuals born in the U.S. with at least one foreign- 
born parent—from third or higher-generation immigrants, whose parents were also U.S.-born. We find that the negative effect of 
early-life exposure to leaded water is considerably larger among second-generation immigrants, with an estimated reduction in 
longevity of approximately 11.3 months. Among third and higher-generation individuals, the effect is smaller at 5.7 months, though 
still negative and meaningful. This pattern may reflect differences in household financial vulnerability, living conditions, or occu-
pational exposures (Bullard, 2018; Collins and Zimran, 2019; Cutler and Miller, 2005). Second-generation immigrant families may 
have faced more crowded or economically constrained environments, potentially increasing susceptibility to the health impacts of 
environmental toxins.

Heterogeneity by Gender – A growing body of research suggests that the health effects of environmental toxin exposure may vary 
by gender, with male individuals often exhibiting greater vulnerability (Almeida Lopes et al., 2017; Froehlich et al., 2009; Jedry-
chowski et al., 2009; Wright et al., 2008). While the DMF data only includes mortality for male individuals, we explore gender-based 
heterogeneity using the Social Security Administration Numident data, which includes both men and women. However, the Numident 
data has an important limitation: it only covers death records from 1988 to 2005, a substantially narrower window than the DMF 
(1975–2005). This constraint is particularly binding in our setting. When we restrict the DMF sample to 1988–2005, the estimated 
effect of early-life lead exposure on longevity drops by about 82 %, from 9.6 months to 1.7 months (Appendix Table B-2, Column 1).

Despite this limitation, the Numident data yields a similar estimate for male individuals, suggesting consistency with our DMF- 
based results (Appendix Table B-2, Column 2). In contrast, when we turn to female individuals in the Numident sample, the esti-
mated effect drops by an additional 57 %, suggesting possible gender differences in vulnerability to early-life lead exposure 

Table 6 
Two-stage least square estimations to examine the robustness to additional controls and alternative functional forms.

Adding more 
city level 
controls

Outcome: log 
age-at-death

Outcome: age- 
at-death > 65

Outcome: age- 
at-death > 70

Outcome: age- 
at-death > 75

Distance from 
Lead Distillery >
30 Miles

Distance from Lead 
Distillery > 60 Miles

(1) (2) (3) (4) (5) (6) (7)

Lead − 9.624*** − 0.011*** − 0.026*** − 0.032*** − 0.032*** − 5.79*** − 11.178***
(1.279) (0.001) (0.004) (0.004) (0.004) (1.999) (2.004)

Observations 1975,402 1975,402 1975,402 1975,402 1975,402 1406,585 1311,422
R-Squared .404 .403 .255 .29 .257 .406 .406
Mean DV 874.822 6.763 0.756 0.591 0.404 872.452 872.472
First-Stage F- 

Stat
1109.884 1260.775 1260.775 1260.775 1260.775 110.887 94.017

Notes. Standard errors, clustered on birth-city and birth-year, are reported in parentheses. The outcome in the first column is age-at-death measured 
in months. All regressions include birth-state by birth-year fixed effects and individual/family/city controls. Controls include dummies for race and 
ethnicity, dummies for paternal socioeconomic index, dummies for maternal literacy, and birth-city covariates, including average socioeconomic 
index, female labor force participation rate, share of married, literacy rate, average occupational prestigious score, urbanization rate, and share of 
females. Column one adds to these covariates by including share of different age groups, share of different race groups, share of homeowners, share of 
institutionalized population, share of immigrants, share of different occupation groups, and school attendance rate.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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(Appendix Table B-2, Column 3). Although we interpret these findings cautiously due to sample constraints, they suggest that the 
adverse longevity effects of lead exposure may be stronger among men.

5.4. Robustness checks

In Table 6, we examine the robustness of the two-stage least square results to alternative specifications and functional forms. In 
column 1, we add a wide array of additional city-level covariates, including the share of different age groups, share of different race 
groups, share of homeowners, share of institutionalized population, share of immigrants, share of different occupation groups, and 
school attendance rate. The estimated coefficient is almost identical to that of the main results.

In column 2, we replace the outcome with log age-at-death. Birth-city lead status is associated with a 1.1 % increase in age-at-death, 
almost identical to the implied percentage change of the coefficient in column 4 of Table 4. In columns 4–6, we replace the outcome 
with dummy variables indicating longevity beyond 65, 70, and 75, respectively. Compared with the mean of the outcomes, the 
estimated coefficients imply a change of roughly 3.4 %, 5.4 %, and 7.9 %, respectively. The effects become larger as individuals reach 
older ages, suggesting the latent impacts of lead exposure during earlier years of life.

In the last two columns of Table 6, we conduct a robustness check by restricting the sample to cities located >30 and 60 miles away 
from the nearest lead refinery. This approach functions as a type of donut-hole analysis, aimed at ruling out the possibility that our 
main results are driven by direct environmental pollution (e.g., airborne or waterborne lead contamination) emanating from proximity 
to the refineries themselves. If the observed reductions in longevity were primarily due to direct exposure from living near a lead 
manufacturing site, we would expect the estimated effects to diminish as we exclude cities closer to the refineries. However, the results 
indicate otherwise, with estimated coefficients that are comparable to the main results and remain both statistically significant and 
economically meaningful.

To address potential selection bias in our analysis sample driven by cross-census linking as well as census-DMF linking, we 
implement an inverse probability weighting (IPW) strategy (Bailey et al., 2020; Halpern-Manners et al., 2020). We begin with the 
full-count 1940 Census and restrict the data to male cohorts born between 1900 and 1940 in cities included in our final sample. We 
then link this dataset to our analysis sample using individuals’ unique histid identifiers and create a binary indicator for successful 
linkage. Next, we estimate a probit regression in which the dependent variable is the linkage indicator and the explanatory variables 
include individual-level characteristics (race and ethnicity, maternal literacy, and paternal socioeconomic index), city-level controls, 
and birth state by birth year fixed effects. This regression predict the probability that an individual with a given set of characteristics 
appears in the final sample. We then use the inverse of this predicted probability as a weight in our main regression specifications. 
Appendix Table B-1 reports the results of this weighted analysis. Both the first-stage and second-stage estimates remain consistent with 
our main results.

5.5. Additional analyses

Early versus Mid-Life Exposure – As mentioned in section 2.2, lead is primarily stored in bones and teeth. Since bone development 
is concentrated in childhood years, children with high exposure accumulate more lead in their bones and teeth. In old age, as bone 
density decreases, this lead is released into the bloodstream, causing internal exposure. This biological mechanism implies the rele-
vance of exposure during earlier years of life compared to adulthood years for the latent impacts on old-age longevity.

In a similar line of argument, studies that examine the long-term effects of environmental exposures usually point to the relevance 
of certain critical ages during early life and childhood (Almond et al., 2018; Almond and Currie, 2011). One potential implication is 
that we may observe discernible differences in lead-longevity correlations based on the age group of exposure. However, city-level lead 
status does not change over time in our sample period. One solution is to look at the sample of individuals who migrate from the city of 
birth to another city with a different lead status. To implement such comparisons, we focus on the subsample of migrants who belong to 
birth cohorts of 1920–1940. Therefore, we have information on lead status in 1940 (early adulthood exposure) as well as lead status at 
birth (early life exposure). We implement regressions similar to Eq. (1) and report the results in Appendix Table A-2. For this sub-
sample, the difference in longevity based on birth-city lead status is about 2.6 months, conditional on controls and fixed effects 
(column 1). In column 2, we add 1940 city fixed effects to compare individuals born in different lead-status cities who migrated to the 
same city. The estimated coefficient is almost identical to that of column 1, suggesting that the destination city characteristics do not 
confound the estimates of column 1. In column 3, we compare lead status in birth-city and early-adulthood-city for individuals who 
migrated to another city with a different lead status than their birth-city. We observe a considerably larger coefficient for birth-city 
than the 1940 city lead status, implying the relevance of early-years exposures rather than later childhood/early adulthood exposures.

6. Candidate mechanisms

Several strands of research suggest that early-life and childhood exposure to pollution, and specifically lead burden, may affect skill 
formation, human capital accumulation, and labor market outcomes (Beach et al., 2016; Currie et al., 2014; Sanders, 2012; Sorensen 
et al., 2019; Taylor, 2022; Zhang and Xu, 2016). On the other end, studies point to the influence of income, socioeconomic status, and 
educational attainments in determining old-age mortality outcomes (Cutler et al., 2006; Fletcher, 2015; Lleras-Muney, 2005; 
Mazumder, 2008; Meghir et al., 2018; Miller and Bairoliya, 2021). Therefore, we would expect to observe changes in the trajectory of 
education and socioeconomic status as mediatory pathways between early-life lead exposure and later-life longevity. We focus on 
individuals above age 19 and examine their characteristics in the 1940 census employing two-stage least-square estimations of Eqs. (2)
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and (3). The results are reported in Table 7. We observe reductions in education, measures of socioeconomic status and occupational 
standing, and wage income. Birth-city lead status is associated with 0.13 lower years of schooling, a 28.2 % reduction in any college 
education, an 10.5 % reduction in the socioeconomic index, a 3.5 % reduction in occupational income score, a 12 % reduction in wage 
income, and a drop in income percentile of about 1.5 units. Finally, in column 7, we use World War II enlistment data and examine the 
effects on AGCT score as a proxy for cognitive and aptitude abilities. We find that birth-city lead status is associated with a 4.6 units 
lower AGCT score, off a mean of 75.5. This effect is equivalent to a reduction of about 6.1 % with respect to the mean.

Halpern-Manners et al. (2020) examine the effects of education on longevity and document that each additional year of schooling is 
associated with about 3.4 months of higher longevity. Therefore, the reduction in years of schooling observed in column 1 implies a 
drop in longevity of about 0.5 months. This is only 4.6 % of the overall effects of lead status and longevity in column 4 of Table 4. 
Fletcher and Noghanibehambari (2023) document that college education is associated with about 1.3–2.7 years of higher longevity. 
Based on column 2 of Table 7 and their estimates, one can calculate that birth-city lead status is associated with 4.3–9.1 months lower 
longevity. This is about 44–93 % of the observed effects in Table 4. Therefore, although reductions in human capital are a likely 
mechanism, decreases in attaining higher levels of education are possibly a more important channel of impact.

Chetty et al. (2016) examine the association between income and longevity using the universe of death records and tax returns in 
the U.S. and document that each additional income percentile is associated with about 1.7–2.2 months higher longevity. Therefore, the 
coefficient of column 6 in Table 7 implies 2.5–3.3 months increases in longevity. This is about 26–34 % of the observed reduced form 
effects of column 6 of Table 4.

7. Conclusion

Despite considerable efforts to improve water quality, many Americans are still at risk of lead in their drinking water. This is 
primarily due to materials used in water system pipelines. There are estimates that between 10–13 million service lines are based on 
leaded materials (Cornwell et al., 2016). Roughly half of the country’s drinking water contains lead levels above the standard 
thresholds set by the American Academy of Pediatrics (NRDC, 2021). With aging water pipes, the dissolution of lead and water 
contamination has become a public health threat. Therefore, it is of policy relevance to examine the full costs of lead exposure, 
specifically among vulnerable populations.

In this paper, we explored the long-lasting impacts of exposure to lead in water pipes on later-life longevity. Overall, we docu-
mented the negative influences of lead exposure on later-life old-age longevity. The fact that the negative associations are larger in 
cities with acidic water and older pipeline systems contributes to our claim that reductions in longevity are driven by lead exposure in 
water systems. These estimates suggest that birth city lead status is associated with reductions in longevity of about 1.6–1.8 months. 
Further, using the sample of migrants, we found a substantially larger negative influence of lead status of birth-city rather than city of 
residence in later life, implying the relevance of exposure during earlier years of life. Our preferred estimation strategy relied on two- 
stage least square estimations that exploited proximity to lead refineries which lowers the cost of lead transportation as the instrument. 
We found that birth-city lead status is associated with roughly 9.6 months lower longevity. This effect is quite robust across alternative 
specifications and functional forms. Further, we provided empirical evidence to show that a significant portion of these reductions in 
later life longevity are driven by reductions in education, specifically higher educational levels.

In the U.S., male life expectancy increased from 46.3 in 1900 to 60.8 in 1940 (O’Neill, 2021). The negative intent-to-treat effects of 
full exposure to lead in drinking water offsets about 5.5 % of the overall health benefits that resulted in rises in life expectancy across 
cohorts of 1900–1940.3 In the final sample, cohorts who were born in lead cities counted as 783,483 individuals. Using the estimated 
effects of the paper across different identification strategies, we calculate roughly 626.8 thousand life-years lost due to the use of lead 
in water pipes in the early part of the 20th century. We can monetize this value by incorporating the Value of Statistical Life (VSL) 
estimates. Some studies suggest using a VSL of about $10 million (in 2020 dollars) (Kniesner and Viscusi, 2019). The average longevity 
in the final sample is 72.9 years. A simple calculation suggests each life year’s value is around $137.2 thousand. Using the estimated 
life years lost in the value of each statistical life, we can estimate a loss of roughly $85.9 billion (in 2020 dollars) due to reductions in 
longevity as a result of exposure to lead in earlier years of life. We should note that this effect does not capture the life years lost due to 
fetal deaths, infant mortality, and premature mortality as a result of the early-life lead burden (Clay et al., 2014; Roy and Edwards, 
2021; Troesken, 2008).

Although we used lead service lines as the measure of exposure, we should note that significant efforts have been made to lower 
population-level lead exposure, such as the Safe Drinking Water Act of 1974 and the Lead and Copper Rule of 1991. There are estimates 
that the efforts since 1970 resulted in a reduction of about 94 % in blood lead levels across the U.S. population aged 1 to 74 (Dignam 
et al., 2019). Through these efforts, a substantial portion of net service lines have been replaced. The estimates, however, suggest that 
between 15 and 22 million people are still using lead-containing service lines in the U.S. (Cornwell et al., 2016).
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