JAMB

Physics

Past questions

Paper Type: Objective (PT. 6-10)

NOT FOR-SALE

Our JAMB past questions (PDF) are FREE for your unlimited download. We only charge for our past questions \& ANSWERS WITH EXPLANATION which you can download NOW by clicking on the link below:

JAMB PHYSICS PAST QUESTIONS (PT.6)

1. What is the least possible error encountered when taking measurement with a meter rule?
A. 0.5 mm
B. 1.0 mm .
C. 0.2 mm .
D. 0.1 mm
2.

The electromotive force in the secondary winding is \qquad
A. stabilizing
B. reducings
C. increasing
D. varying
3. If a pump is capable of lifting 5000 kg of water through a vertical height of 60 in 15 mins, the power of the pump is \qquad
A. $3.3 \times 10^{3} \mathrm{Js}^{-1}$
B. $2.5 \times 10^{4} \mathrm{~J} \mathrm{~s}^{-1}$
C. $2.5 \times 10^{5} \mathrm{Js}^{-1}$
D. $3.3 \times 10^{2} \mathrm{~J} \mathrm{~s}^{-1}$
4. Calculate the temperature change when 500J of heat is supplied to 100 g of water.
A. $12.1^{\circ} \mathrm{C}$
B. $2.1^{\circ} \mathrm{C}$
C. $1.2^{\circ} \mathrm{C}$
D. $0.1^{\circ} \mathrm{C}$
5. Which of the following particles CANNOT be deflected by both electric and magnetic fields?
A. Gamma rays
B. Alpha particles.
C. Wave particles
D. Beta particles.
6. Under which of the following conditions do gasses conduct electricity?
A. High pressure and low p.d
B. Low pressure and high p.d
C. Low pressure and low p.d
D. High pressure and high p.d
7. Dispersion occurs when white light passes through a glass prism because of the
A. defects in the glass.
B. high density of the glass.
C. different speeds of the colour in the glass.
D. different hidden colours in the glass.
8.

Calculate the e.m.f of the cell in the above circuit if its internal resistance is negligible.
A. 12 V
B. 36 V
C. 2 V
D. 8 V
9. An object of mass 80 kg is pulled on a horizontal rough ground by a force of 500N. Find the coefficient of static friction.
A. 0.6.
B. 0.4
C. 1.0
D. 0.8 .

$$
\left[g \approx 10 \mathrm{~ms}^{-2}\right]
$$

10.

The diagram above shows plank RS pivoted at its centre of gravity \mathbf{O} and is in equilibrium with the weighs \mathbf{P} and \mathbf{Q}. If a weight $2 P$ is added to \mathbf{P}, the plank will be in equilibrium again by \qquad
A. moving \mathbf{P} nearer to $\mathbf{0}$.
B. moving \mathbf{Q} nearer to \mathbf{O}.
C. adding a weight \mathbf{Q} to \mathbf{Q}.
D. moving \mathbf{P} further away from \mathbf{O}.
11. A glass plate 0.9 cm thick has a refractive index of 1.50 . How long does it take for a pulse of light to pass through the plate?
A. $3.0 \times 10^{-10} \mathrm{~s}$
B. $4.5 \times 10^{-11} \mathrm{~s}$
C. $3.0 \times 10^{-11} \mathrm{~s}$
D. $4.5 \times 10^{-10} \mathrm{~s}$
$\left[\mathrm{c}=3.0 \times 10^{8} \mathrm{~ms}^{-1}\right]$
12. The main purpose of the transformer in an a.c radio set is to \qquad
A. increase power to the radio.
B. convert energy from a.c. to d.c
C. step up the voltage.
D. step down the voltage.
13. The energy associated with the emitted photon when a mercury atom changes from one state to another is 3.3 eV . Calculate the frequency of the photon.
A. $3.2 \times 10^{-53} \mathrm{~Hz}$.
B. $3.1 \times 10^{-53} \mathrm{~Hz}$
C. $1.3 \times 10^{-53} \mathrm{~Hz}$
D. $8.0 \times 10^{-53} \mathrm{~Hz}$
14. ${ }^{235}{ }_{92} U+{ }^{1} \mathrm{on} \rightarrow{ }^{144}{ }_{56} \mathrm{Ba}+{ }^{90}{ }_{36} \mathrm{Kr}$ $+2 X$

In the reaction above, X is \qquad
A. electron.
B. neutron.
C. neutrino.
D. proton.
15. To protect a material from the influence of an external magnetic field, the material should be kept in a \qquad
A. soft iron ring.
B. loop of copper wire.
C. triangular zinc ring.
D. square steel ring.
16.

The refractive index of the medium M in the diagram above is \qquad
A. $\frac{2}{\sqrt{3}}$
B. $\sqrt{ } 3$
C. $\frac{1}{\sqrt{3}}$
D. $\sqrt[2]{3}$
17. Thermal equilibrium between two objects exists when \qquad
A. the heat capacities of both objects are the same
B. the quantity of heat in both objects are the same.
C. the temperature of both objects are equal
D. one object loses heat continuously to the other.
18. Which of the following is a characteristic of stationary waves?
A. The antinode is a point of minimum displacement.
B. The distance between two successive nodes is one wavelength.
C. They can be transverse or longitudinal
D. They are formed by two identical waves travelling in opposite directions.
19. The height at which the atmosphere ceases to exist is about 80 km . if the atmospheric pressure at a height of 20 km above the ground level is \qquad
A. 480 mmhg
B. 570 mmhg
C. 190 mmhg
D. 380 mmhg
20. A metal of mass 0.5 kg is heated to 100° and then transferred to a well-lagged
calorimeter of heat capacity $80 \mathrm{jk}^{-1}$ containing water of heat capacity of the metal
A. $92 \mathrm{j} \mathrm{kg}^{-1}$
B. $286 \mathrm{j} \mathrm{kg}^{-1} \mathrm{k}^{-1}$
C. $133 \mathrm{j} \mathrm{kg}^{-1} \mathrm{k}^{-1}$
D. $887 \mathrm{j} \mathrm{kg}^{-1} \mathrm{k}^{-1}$
21. In the series a.c circuit shown below, the p.d across the inductor is 8 V.r.m.s. The effective voltage is \qquad

A. 10 v
B. 2 v
C. 14 v
D. 48 v
22. In a closed organ pipe producing a musical note, an antinode will always be produced at \qquad
A. the closed end
B. the middle
C. the open end
D. all the parts of the pipe.
23. What happens when a certain quantity of pure ice is completely changed to water at $0^{\circ} \mathrm{C}$?
A. Latent heat is absorbed, the mass decreases and the volume increases.
B. latent heat is absorbed, the mass remains constant and the volume decreases.
C. Iatent heat is given out, the mass increases and the volume remains constant
D. latent heat is given out, the mass remains constant and the volume decreases.
24.

In the diagram above, PQ and R are vectors. Which of the following options gives the correct relationship between the vectors?
A. $P=Q+R$
B. $P=Q-R$
C. $P=R-Q$
D. $P+Q+R=O$
25. If two parallel conductors carry currents flowing in the same direction, the conductors will
A. repel each other
B. attract each other
C. both move in the same direction.
D. have no effect on each other
26. Which of the following correctly explain(s) why a green leaf appears green in a bright daylight?
I. It absorbs only the green component of sunlight
II. It absorbs all colours in sunlight except green
III. It reflects only the green component of sunlight
A. I only
B. II and III only
C. I and II only
D. II only.
27. Which of the following factors has no effect on the e.m.f of a primary cell?
A. nature of plate
B. size of the cell
C. temperature
D. nature of the electrolyte.
28. When the bottom tip of a vibrating tuning fork is held in contact with a wooden box, a louder sound is heard. This phenomenon is known as \qquad
A. beats
B. echoing
C. reverberation
D. resonance
29. A particle of mass m which ia at rest splits up into two. If the mass and the velocity of one of the particles are m and v respectively, calculate the velocity of the second particle.
A. $\frac{\mathrm{MV}}{\mathrm{M}}$
B. $\frac{\mathrm{MV}}{\mathrm{M}-\mathrm{M}}$
C. $\frac{\mathrm{MV}}{\mathrm{M}+\mathrm{M}}$
D. $\frac{\mathrm{MV}}{\mathrm{M}-\mathrm{m}}$
30. The electrochemical equivalent of silver is $0.0012 \mathrm{~g} / \mathrm{C}$ if 36.0 g of silver is to be deposited by electrolysis on a surface by passing a steady current for 5.0 minutes, the current must be
A. 6000 A
B. 100 A
C. 100 A
D. 1.0 A
31. The principle of operation of an induction coil is based on
A. Ohm's
B. ampere's law
C. faraday's law
D. coulomb's law
32. A radioactive sample initially contains N atoms. After three half-lives the number of atoms that have disintegrated is \qquad
A. $\frac{7 \mathrm{~N}}{8}$
B. $\frac{3 n}{8}$
C. $\frac{5 \mathrm{~N}}{8}$
D. $\frac{\mathrm{N}}{8}$
33. Mercury is suitable as a barometric fluid because it \qquad
A. expands uniformly
B. is several times denser than water
C. is opaque
D. is a good conductor of heat
34. Which of the following features is NOT a characteristic of natural radioactivity?
A. radioactivity is a nuclear phenomenon
B. radioactivity is exhibited only by the element of mass number greater than 206
C. The radioactivity of an element is affected by electric and magnetic fields in the surroundings.
D Radioactive substances emit three types of radiations \propto-rays, β-rays and γ-rays.
35. Which of the following is a correct explanation of the INERTIA of a body?
A. Reluctance to start moving at rest and its reluctance to stop moving once it has begun move
B. Reluctance to stop moving
C. Readiness to start moving
D. Reluctance to start moving and its readiness to stop moving once it has begun to move
36. If the force on a charge of 0.2 coulomb in an electric field intensity of the field is \qquad
A. $0.8 \mathrm{~N} / \mathrm{C}$
B. $20.0 \mathrm{~N} / \mathrm{C}$
C. $0.8 \mathrm{~N} / \mathrm{C}$
D. $4.2 \mathrm{~N} / \mathrm{C}$
37. The point beyond which a stretched spring does not return to its original length is called the
\qquad
A. breaking point
B. sprint constant
C. elastic limit
D. elasticity point
38. Which of the following statements is applicable to a real image formed by a concave mirror?

> I. It can be observed on a screen
> II. It is always inverted and in front of the mirror III. It only seems to exist IV. It is formed by the actual converging of rays of light.

A. I, II and III only

B. I, II and IV only
C. I and III only
D. I and II only
39. Which of the following does not cause a reduction of the surface tension of water?
A. soap solution
B. detergent
C. alcohol
D. grease
40. In what range of temperature is the expansion of water anomalous?
A. $+208^{\circ} \mathrm{C}$ to $+212^{\circ} \mathrm{C}$
B. $-800^{\circ} \mathrm{C}$ to $-76^{\circ} \mathrm{C}$
C. $0^{\circ} \mathrm{C}$ to $4^{\circ} \mathrm{C}$
D. $-4^{\circ} \mathrm{C}$ to 0°

CHECK YOUR ANSWERS

Would you like to get or confirm the correct answer(s) with explanations to any or all of these questions?

Download it NOW!

CLICK HERE

1. The focal length of a concave mirror is 2.0 cm . If an object is placed 8.0 cm from it, the image is at \qquad
A. 2.7 m
B. 2.3 m
C. 2.5 m
D. 2.0 m
2. PHCN measures is electrical energy in \qquad
A. Wh.
B. Kwh
C. J
D. W.
3. The resultant of two forces is 50N. If the forces are perpendicular to each other and one of them makes an angle 30° with the resultant. Find its magnitude.
A. 100.0 N
B. 57.7 N
C. 25.0 N
D. 43.3 N
4. A piece of radioactive material contains 1000 atoms. If its halflife is 20 seconds, the time taken for 125 atoms to remain is \qquad
A. 20 seconds
B. 40 seconds
C. 60 seconds
D. 80 seconds
5. The correct expression for the potential at a point, distance r from a charge q, in an electric field is \qquad
A. $\frac{\mathrm{q}}{4 \pi \epsilon \theta \mathrm{r}}$
B. $\frac{\mathrm{q}^{2}}{4 \pi \epsilon \theta \mathrm{r}^{2}}$
C. $\frac{\mathrm{q}}{4 \pi \epsilon \mathrm{r}^{2}}$
D. $\frac{\mathrm{q}^{2}}{4 \pi \epsilon \theta \mathrm{r}}$
6. A typical transistor characteristic is represented as
\qquad
A.
C.

B.

D.

7. In a discharge tube, most of the gas is pumped out so that electricity is concluded at \qquad
A. steady voltage
B. high pressure
C. Iow pressure.
D. Iow voltage.
8.

> I. Moon
II. Sun
III. Street light
IV. Stars

Which of the above is a natural source of light?
A. I, II and IV only
B. I, II and III only
C. III and IV only
D. II and IV only
9. An object placed at the bottom of a well full of clear water appears closer to the surface due to \qquad
A. refraction.
B. reflection.
C. am inverter
D. a magnifier
10. A boy drags a bag of rice along a smooth horizontal flow with a force of 2 N applied at an angle of 60° to the flow. The work done after a distance of 3 m is
\qquad
A. 6 J .
B. 4 J
C. 5 J
D. 3 J
11. The spheres of masses 5.0 kg and 10.0 kg are 0.3 m apart. Calculate the force of attraction between them.
A. $3.57 \times 10^{-2} \mathrm{~N}$.
B. $3.71 \times 10^{-2} \mathrm{~N}$.
C. $4.00 \times 10^{-2} \mathrm{~N}$.
D. $3.50 \times 10^{-2} \mathrm{~N}$.
12. When very hot water is poured into two identical thin and thick glass tumblers in equal volumes, the thick one cracks because \qquad
A. of the even expansion of lass.
B. glass is a good conductor of heat.
C. glass is a crystal
D. of the uneven expansion of glass
13.

The diagram above represents the stress-strain for atypical metal rod. What does X represent?
C. Elastic limit
D. proportional limit
14. Transverse waves can be distinguished from longitudinal waves using the characteristic of
\qquad
A. diffraction
B. reflection.
C. polarization.
D. refraction.
15. Which of the following pairs of light rays shows the widest separation in the spectrum of white light?
A. Green and yellow.
B. Blue and red
C. Indigo and violet
D. Orange and red.
16.

A. Yield point
B. Breaking point

Which of the following graphs shows the correct vector diagram for the circuit above?
A.

C.

B.

D.

17. A transistor functions mainly as a \qquad
A. switch and an amplifier
B. rectifier and an amplifier
C. charge storer and a switch
D. charge storer and an amplifier
18. A thin wire with heavy weights attached to both ends is hung over a block of ice resting on two supports. If the wire cuts through the ice block while the lock remains solid behind the wire, the process is called \qquad
A. fusion
B. sublimation
C. regelation
D. condensation
19. The inner diameter of a small test tube can be measured accurately using a \qquad
A. micrometer screw gauge
B. pair of Vernier callipers
C. metre rule
D. pair of dividers
20. A platinum resistance thermometer records 3.0 W at $0^{\circ} \mathrm{C}$ and $8 / 0 \mathrm{w}$ at $100^{\circ} \mathrm{C}$. If it records 6.0W in a certain environment, the temperature of the medium is
A. $60^{\circ} \mathrm{C}$
B. $80^{\circ} \mathrm{C}$
C. $50^{\circ} \mathrm{C}$
D. $30^{\circ} \mathrm{C}$
21.

In the diagram above, which of the angles $\Theta 1, \Theta 2, \Theta 3$, and $\Theta 4$ is the angle of deviation of a ray of light passing through XYZ?
A. $\Theta 2$
B. $\Theta 3$
C. $\Theta 1$
D. $\Theta 4$
22. Which of the following is the dimension of pressure?
A. $M L^{2} T^{-3}$
B. $\mathrm{MLT} T^{-2}$
C. $M L 2^{-1} T^{-2}$
D. $M L^{-3}$
23. A capacitor $8 \mu \mathrm{~F}$, is charged to a potential difference of 100 V . The energy stored by the capacitor is \qquad
A. $1.0 \times 10^{4} \mathrm{~J}$
B. $4.0 \times 10^{-2} \mathrm{~J}$
C. $1.25 \times 10 \mathrm{~J}$
D. $8.0 \times 10 \mathrm{~J}$
24. Which of the following statements correctly describe(s) cathode rays?
I. They consist of tiny particles carrying negative electric charges
II. They are deflected in a magnetic field but not in an electric filed.
III. They consist of fastmoving neutrons and deflected in an electric filed.
A. I only
B. III only
C. I and II only
D. II and III only
25. A concave mirror has a radius of curvature of 36 cm . At what distance from the mirror should an object be placed to give a real image three times the size of the object?
A. 12 cm
B. 24 cm
C. 48 cm
D. 108 cm

$2 \mu F$

The net capacitance in the circuit shown above is \qquad
A. $8.0 \mu \mathrm{~F}$
B. $6.0 \mu \mathrm{~F}$
C. $2.0 \mu \mathrm{~F}$
D. $4.0 \mu \mathrm{~F}$
27. A sonometer wire of length 100 cm under a tension of 10 N , has a frequency of 250 Hz . Keeping the length of the wire constant, the tension is adjusted to produce a new frequency of 350 HZ . The new tension is \qquad
A. 5.1 N
B. 19.6 N
C. 14.0 N
D. 7.1 N
28. In a sound wave in air, the adjacent rarefactions and compressions are separated by a distance of 17 cm . If the velocity of the sound wave is $340 \mathrm{~ms}^{-1}$. Determine the frequency.
A. 10 Hz
B. 20 Hz
C. 5780 Hz
D. 1000 Hz
29. A note is called an octave of another note when \qquad
A. the notes have the same fundamental frequency
B. its frequency is half of the first note.
C. its frequency is twice that of the first note.
D. its periodic time is twice that of the first note
30. A metallic strip of iron and brass was heated. Which of the following diagrams accurately illustrated the shape of the strip after heating?
B. $\xrightarrow{-}$ Brass
C.

D. minmurnut:-Brass
D. \longrightarrow Iron
31. Which of the following is in a neutral equilibrium?
A. A heavy weight suspended on a string
B. The beam of a balance in use
C. A heavy-based table lamp
D. A cone resting on its slant edge
32. A convex mirror is used as a driving mirror because \qquad
I. Its image is erect
II. It has a large field of view III. It has a long focal length.

Identify the CORRECT statement(s).
A. I and III only
B. I and II only
C. II and III only
D. I, II and III only
33. What is the cost of running five 50W lamps and four 100W lamps for 10 hours if electrical energy costs 2 kobo per kWh?
A. \# 0.13
B. \# 0.65
C. \# 3.90
D. \#39.00
34. The specific latent heat of vaporization of a substance is always \qquad
A. less than its specific latent heat of fusion
B. equal to its specific latent heat of fusion
C. greater than its specific latent of fusion
D. all of the above depending on the nature of the substance.
35. A hydrometer is an instrument for measuring the
\qquad
A. depth off water in a vessel
B. relative humidity of the air
C. relative density of a liquid by finding the apparent loss in weight
D. relative density of a liquid by the method of flotation
36. A transformer has 300 turns of wire in the primary coil and 30 turns in the secondary coil. If the input voltage is 100 volts, the output voltage is \qquad
A. 10 volts
B. 5 volts
C. 15 volts
D. 20 volts
37. The activity of a radioactive substance depends on \qquad
A. temperature and purity
B. purity and age
C. temperature and age
D. age, purity and temperature
38. The speed of light in air is $3 x$ $10^{8} \mathrm{~ms}^{-1}$. If the refractive index of light from air-to-water is 4/3, then which of the following is the
correct value of the speed of light in water?
A. $4 \times 10^{8} \mathrm{~ms}^{-1}$
B. $2.23 \times 10^{8} \mathrm{~ms}^{-1}$
C. $2.25 \times 10^{8} \mathrm{~ms}^{-2}$
D. $4 / 9 \times 10^{8} \mathrm{~ms}^{-1}$
39. A magnet is moved through a coil of wire. The e.m.f. produced in the wire depends on \qquad
A. the number of turns in the coil
B. the strength of magnet
C. the speed at which the magnet is moved
D. all of the above
40. A charge of one coulomb liberated 0.0033 g of copper in an electrolytic process. How long will it take a current of 2 A to liberate 1.98 g of copper in such a process?
A. 30 minutes
B. 5 minutes
C. 50 minutes
D. 60 minutes

1. A man walks 1 km due east and then 1 km due north. His displacement is \qquad
A. $\sqrt{ } 2 \mathrm{~km} \mathrm{~N} 45^{\circ} \mathrm{E}$
B. $1 \mathrm{~km} \mathrm{~N} 30^{\circ} \mathrm{E}$
C. $1 \mathrm{~km} \mathrm{~N} 15^{\circ} \mathrm{E}$
D. D. $\sqrt{ } 2 \mathrm{~km} \mathrm{~N} 60^{\circ} \mathrm{E}$
2. The density of 400 cm of palm oil was 0.9 g before frying. If the density of the oil was 0.6 after frying, assuming no loss of oil to spilling, its new volume was \qquad
A. 360 cm 3
B. 600 cm 3
C. 240 cm 3
D. 800 cm 3
3. Which of the following is true of an electrical charge?
A. Positive charge means deficit electrons
B. Negative charge means excess of electrons
C. Electric current means movement of electrons
D. All of the above
4. Natural radioactivity consists of the emission of \qquad
A. α-particles and β-rays
B. \propto-particles and X-rays
C. α-particles, β-rays and g-rays
D. Y -rays and X -rays
5. Which of the following does NOT describe the image formed by a plane mirror?
A. Erect
B. Laterally inverted
C. Same distance from mirror as object
D. Magnified
6.

What is the resultant resistance of the circuit given above?
A. 8Ω
B. 11Ω
C. 4Ω
D. 3.6Ω
7. Which of the following best describes the energy changes which take place when a steam engine drives a generator which lights a lamp?
A. Heat \rightarrow Light \rightarrow Sound \rightarrow Kinetic
B. Heat \rightarrow Kinetic \rightarrow Electricity \rightarrow Heat and Light
C. Kinetic Light \rightarrow Heat \rightarrow Electricity
D. Electricity \rightarrow Kinetic \rightarrow Heat \rightarrow Light
8. Cathode rays are \qquad
A. High-energy electromagnetic waves
B. protons
C. neutrons
D. streams of electrons
9. A narrow beam of white light can be split into different colours by a glass prism. The correct explanation is that \qquad
A. white light is an electromagnetic wave
B. the prism has all the colours of the white light
C. different colours of white light travel with different speeds in glass
D. white light has undergone total internal reflection in the prism.
10.

Figure 2 represents a block- andtackle pulley system on which an
effort of W Newton supports a load of 120.0 N . If the efficiency of the machine is 40 , then the value of W is \qquad
A. 28.0 N
B. 48.0 N
C. 288.0 N
D. 50.0 N
11. What type of reaction is represented by the following scheme?
${ }^{2} X+{ }_{1}{ }_{1} Y \rightarrow{ }^{3}{ }_{2} Z+{ }^{1}$ on + energy
A. Fusion reaction
B. Fission reaction
C. Chain reaction
D. Radioactive decay
12. The amount of heat needed to raise the temperature of 10 kg of copper by 1 K its \qquad
A. specific heat capacity
B. latent heat
C. heat capacity
D. internal energy
13. The electrochemical equivalent of silver $0.0012 \mathrm{~g} / \mathrm{C} /$ of 36.0 g of silver is to be deposited by electrolysis on a surface by passing a steady current for 5.0 minutes, the current must be
\qquad
A. 6000 A
B. 100 A
C. 10 A
D. 1 A
14. Shadows and eclipses result from the \qquad
A. refraction of light
B. reflection of light
C. defraction of light
D. rectilinear propagation of light
15. Which of the following obeys Ohm's Law?
A. All metals
B. Diode only
C. All electrolytes
D. Glass
16. Which of the following statements are TRUE OF ISOTOPES?
I. Isotopes of an element have the same chemical properties because they have the same number of electrons
II. Isotopes of elements are normally separated using physical properties
III. Isotopes of an element has the same number of protons in their nuclei.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
17.

In the diagram above, the hanging mass m is adjusted until m is on the verge of sliding. The
coefficient of static friction between mass m and the table is
\qquad
A. $\frac{m_{1}}{m_{2}}$
B. $\frac{\mathrm{m}_{1} \mathrm{~g}}{\mathrm{~m}_{2}}$
C. $\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}$
D. $\frac{\mathrm{m}_{2} \mathrm{~g}}{\mathrm{~m}_{1}}$
18. Which of the following may be used to explain a mirage?
I. Layers of air near the road surface have varying refractive indices in hot weather
II. Road surfaces sometimes become good reflectors in hot weather.
III. Light from the sky can be reflected upwards after coming close to and the road surface.
A. I and III only
B. II and III only
C. II only
D. I, II and III
19. In the diagram below, if the atmosphere pressure is 760 mm , the pressure in the chamber G is

A. 660 mm
B. 830 mm
C. 690 mm
D. 860 mm
20. Which of the following has the lowest internal resistance when new?
A. Leclanche cell
B. Daniel cell
C. Torch battery
D. Accumulator
21. The pitch of an acoustic device can be increased by \qquad
is fired with a velocity of $200 \mathrm{~ms}^{-1}$ into a lead block of mass 0.95 kg . Given that the lead block can
A. $16.03 \mathrm{~cm}^{3}$
B. $15.09 \mathrm{~cm}^{3}$
C. $16.00 \mathrm{~cm}^{3}$
D. $15.03 \mathrm{~cm}^{3}$
24. A lead bullet of mass 0.05 kg
move freely, the final kinetic energy after impact is \qquad
A. 150 J
B. 100 J
C. 50 J
D. 200 J
25. In a series R-L-C circuit at resonance, the voltages across the resistor and the inductor are 20 V and 40 V respectively. What is the voltage across the capacitor?
A. 30 V
B. 70 V
C. 50 V
D. 40 V
26. If the fraction of the atoms of a radioactive material left after 120 years is $1 / 64$, what is the half-life of the material?
A. 20 years
B. 10 years
C. 2 years
D. 24 years
27. In the diagram below, which of the simple pendula will resonate with \mathbf{P} when set into oscillation?

A. U
B. T
C. R and T
D. Q and R
28. The time rate of loss of heat by a body is proportional to the
\qquad
A. temperature of its surroundings
B. temperature of the body
C. difference in temperature between the body and its surroundings
D. ration of the temperature of the boy to that of its surroundings
29. A positive charged rod X is brought near an uncharged metal sphere Y and is then touched by a finger with X still in place. When the finger is removed, the result is that Y has \qquad
A. no charge and a zero potential
B. a positive charge and a zero potential.
C. a negative charge and a positive potential.
D. a negative charge and a negative potential.
30. Electrical appliances in homes are normally earthed so that
A. a person touching the appliances is safe from electric shock.
B. both the a.c. and d.c. sources can be used.
C. the appliances are maintained at a higher p.d. than the earth.
D. the appliances are maintained at a lower p.d. than the earth.
31. The process whereby a liquid turns spontaneously into vapour is called \qquad
A. regelation
B. evaporation.
C. boiling.
D. sublimation.
32. Which of the following diagrams represents correctly an $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistor?

33. The differences observed in solids, liquids and gases may be accounted for by \qquad
A. their relative masses.
B. their melting points.
C. the spacing and forces acting between the molecules.
D. the different molecules in each of them.
34. Convex mirrors are used as driving mirrors because images formed are \qquad
A. erect, virtual and diminished
B. erect, real and diminished
C. erect, virtual and magnified
D. inverted, virtual and diminished.
35. Musical instruments playing the same note can be distinguished from one another owing to the differences in their
A. quality.
B. pitch.
C. intensity
D. loudness
36.

In the diagram above, if the south-poles of two magnets stroke a steel bar, the polarities at T and V will respectively be
\qquad
A. north and south.
B. south and south.
C. north and north.
D. south and north.
37. In homes, electrical appliances and lamps are connected in parallel because
\qquad
A. less current will be used
B. less voltage will be used.
C. parallel connection does not heat up the wires
D. series connection uses high voltage
38. An object moves in a circular path of radius 0.5 m with a speed of $1 \mathrm{~ms}^{-1}$. What is its angular velocity?
A. $8 \mathrm{rads}^{-1}$
B. $4 \mathrm{rads}^{-1}$
C. $1 \mathrm{rads}^{-1}$
D. $2 r a d s^{-1}$
39. What effort will a machine of efficiency 90% apply to lift a load of 180 N if its efforts arm is twice as long as its load arm?
A. 100 N
B. 90 N
C. 80 N
D. 120 N
40.

Calculate the effective capacitance of the circuit above.

CHECK YOUR ANSWERS

Would you like to get or confirm the correct answer(s) with explanations to any or all of these questions?

Download it NOW!

CLICK HERE

A. $4 \mu \mathrm{f}$
B. $3 \mu \mathrm{f}$
C. $2 \mu \mathrm{f}$
D. $1 \mu \mathrm{f}$

JAMB PHYSICS PAST QUESTIONS (PT.9)

1. The force required to make an object of mass m, travelling with velocity v, turn in a circle of radius r is \qquad
A. $m r^{2} / v$
B. $m v^{2} / r$
C. mr / v
D. $m v / r^{2}$
2. An ice cube floats in a glass of water filled to the brim. What happens when the ice melts?
A. There is a drop in the level of water in the glass due to condensation on the outside
B. The water level remains the same
C. The water in the glass overflows
D. The level of water drops because melted ice occupies less volume
3. A 500 kg car which was initially at rest travelled with an acceleration of $5 \mathrm{~m} \mathrm{sec}^{-2}$, its
kinetic energy after 4 seconds was \qquad
A. $10^{5} \mathrm{~J}$
B. 2.5J
C. $2 \times 10^{3} \mathrm{~J}$
D. $5 \times 10^{3} \mathrm{~J}$
4. Which if the following are true of atoms?
A. Atoms are indestructible
B. The number of protons equals the number of electrons
C. Atoms of different substances have different weight
D. All of the above
5. A pressure cooker saves both time and fuel in cooking because inside the cooker, the \qquad
A. pressure is constant
B. boiling of water is raised
C. heated is completely trapped
D. temperature is evenly distributed
6. A vapour is said to be saturated when \qquad
A. more molecules return to the liquid than leave it
B. the vapour pressure is atmospheric
C. a dynamic equilibrium exists between the liquid molecule and the vapour molecule at a given temperature
D. the temperature of the vapour varies
7. The following types of waves are all transverse except \qquad
A. light waves
B. radio waves
C. surface waves on water
D. sound waves
8. Which of the circuits illustrated below will give a total resistance of 1Ω ?

9. A ship travelling towards a cliff receives the echo of its whistle after 3.5 seconds. A short while later, it receives the echo after 2.5 seconds. If the speed of sound in air under the prevailing conditions is $250 \mathrm{~ms}^{-1}$, how much closer is the ship to the cliff?
A. 125 m
B. 10 m
C. 175 m
D. 350 m
10. For which of the underlisted quantities is the derived unit $\mathrm{ML}^{2} \mathrm{~T}^{2}$ correct?

I. Moment of a force
 II. Work
 III. Acceleration

A. I only
B. I and II
C. III only
D. II only
11. Radio waves have a velocity of $3 \times 10^{8} \mathrm{~ms}^{-1}$. A radio station
sends out a broadcast on a frequency of 800 KHz . The wavelength of the broadcast is
A. 240.0 m
B. $267.0 r a$
C. 375.0 m
D. 37.5 m
12.

The graph in the diagram above describes the motion of a particle. The acceleration of the particle during the motion is \qquad
A. $0.00 \mathrm{~ms}^{-2}$
B. $0.25 \mathrm{~ms}^{-2}$
C. $8.00 \mathrm{~ms}^{-2}$
D. $4.00 \mathrm{~ms}^{-2}$
13. Water shows anomalous behaviour \qquad
A. below $0^{\circ} \mathrm{C}$
B. above $100^{\circ} \mathrm{C}$
C. at exactly $4^{\circ} \mathrm{C}$
D. between $0^{\circ} \mathrm{C}$ and $4^{\circ} \mathrm{C}$
14. A uniform metre rule $Q R$ is balanced on a knife edge which is 55 cm from R. When a mass of 10 g is hung at P as shown below, the mass of the metre rule is
\qquad

A. 70 g
B. 350 g
C. 550 g
D. 35 g
15. The vacuum in a thermos flask helps to reduce heat transfer by \qquad
A. convection and radiation
B. convection and conduction
C. conduction and radiation
D. radiation only
16. Which of the following phenomena explains the formation of a mirage?
I. Reflection
II. Refraction

III. Diffraction

A. I and III only
B. II and III only
C. I and II only
D. I, II and III
17. An object is placed $5.6 \times 10^{-4} \mathrm{~m}$ in front of a converging lens of focal length $1.0 \times 10^{-n} \mathrm{~m}$. The image formed is \qquad
A. real, erect and magnified
B. virtual, erect, and diminished
C. real, inverted, and magnified
D. virtual, erect, and magnified
18. A bar of initial length I_{0} is heated through a temperature change Δt to a new length I. The linear expansivity, \propto, of the bar is
A. $\frac{1-l_{0}}{1 \Delta t}$
B. $\frac{1-l_{0}}{l_{0} \Delta t}$
C. $l_{0}(1+\Delta l)$
D. $\frac{1-l_{0}}{1(+\Delta t)}$
19. A moving coil galvanometer of 300Ω resistance gives full scale deflection for 1.0 mA . The resistance, R, of the shunt that is required to convert the galvanometer into a 3.0A ammeter is \qquad
A. 899.70Ω
B. 0.10Ω
C. 10.00Ω
D. 0.01Ω
20. Which of the following arrangement of the electromagnetic spectrum is in ascending order of wavelengths?
A. gamma rays, ultraviolet rays, x-rays, infra-red rays
B. infra-red rays, ultraviolet rays, x-rays, gamma rays
C. gamma rays, x-rays, ultraviolet rays, infra-red rays
D. gamma rays, ultraviolet rays, infra-red rays, x-rays
21. An aeroplane lands on a runway at speed of $180 \mathrm{Kmh}^{-1}$ and is brought to a stop uniformly in 30 seconds. What distance does it cover in the runway before coming to rest?
A. 360 m
B. 540 m
C. 957 m
D. 750 m

In the circuit diagram, calculate the current in the 12Ω resistor if the cell has an e.m.f of 12 V and an internal resistance of 1Ω.
A. 2.4 A
B. 1.0 A
C. 1.6 A
D. 0.8 A
23.

The value of T in the diagram is
\qquad
A. 10.0 N
B. 40.0 N
C. 20.0 N
D. 111.8 N
24. At what respective value of x, y, and z would the unit of force, the newton, be dynamically equivalent to $M^{\times} L^{y} T^{z}$?
A. $-1,1,2$
B. 1, $-1,2$
C. 1, 1, -2
D. $-1,1,-2$
25. A 500W heater is used to heat 0.6 kg of water from 25 to $100^{\circ} \mathrm{C}$ in t_{1} seconds. If another 1000 W heater is used to heat 0.2 kg of water from $10^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ in t_{2} seconds, find $\frac{t_{1}}{t_{2}}$
A. 50
B. $1 / 5$
C. 5/4
D. 5

The diagram above shows a magnet with its south pole moved along a soft-iron bar PQ in the direction as shown. After some time, the poles at Q respectively are \qquad
A. North-South
B. North-North
C. South-North
D. South-South
27. A gas would serve as an electrical conductor under \qquad
A. reduced pressure and reduced potential
B. increased magnetic field
C. reduced pressure and high current
D. exposure to visible light

If current flows in the direction of the arrows in the solenoid above, the North pole is at \qquad
A. P
B. Q
C. X
D. Y
29. The magnetic force on a charged particle moving with velocity is \qquad
A. proportional to the velocity v only
B. independent of the magnitude of the charge
C. proportional to both the magnitude of the charge and the velocity v
D. proportional to the magnitude of the charge only
30. The eye controls the amount of light reaching the retina by adjusting the \qquad
A. retina
B. optic nerve
C. cornea
D. iris
31. A satellite is in a parking orbit if its period is \qquad
A. equal to the period of the earth
B. more than the period of the earth
C. less than the period of the earth
D. the square of the period of the earth
32. What types of mirrors are capable of producing parallel beams of light such as those arising from the headlamps of a car?
A. cylindrical mirrors
B. spherical mirrors
C. plane mirrors
33. A body of mass 36 kg falls through a viscous liquid which offers a drag force of 260 N on the body. The upthrust of the body at terminal velocity is \qquad
A. 310 N
B. 50 N
C. 620 N
D. 100 N
34. Which of the following diagrams represent the magnetic field of two isolated unlike poles?

35. Lenz's law is a law of the conservation of \qquad
A. momentum
B. energy
C. electric current
D. electric charge
36. Counting of currency notes with moist fingers is based on the principle of \qquad
A. diffusion
B. cohesion
C. viscosity
D. adhesion
37. If negative charges are induced on an electroscope and a positively charged rod is brought near the cap of the electroscope, the leaves will \qquad
A. become negatively charged
B. become positively charged
C. close up
D. open further
38. One special advantage of alcohol over mercury as a thermometric liquid is its \qquad
A. low density
B. low boiling point
C. high specific heat capacity
D. low freezing point
39. Which of the following is a property of steel?
A. It can easily be magnetised and demagnetised
B. It can be used for making permanent magnets
C. It cannot retain its magnetism longer than iron
D. It can be used for making temporary magnets
40. One of the conditions necessary for an object to be in equilibrium when acted upon by a number of parallel forces is that the vector sum of the forces is
\qquad
A. zero
B. negative
C. positive
D. average

CHECK YOUR ANSWERS

Would you like to get or confirm the correct answer(s) with explanations to any or all of these questions?

Download it NOW!

CLICK HERE

JAMB PHYSICS PAST QUESTIONS (PT.10)

1. A few grains of table salt were put in a cup of cold water, kept at constant temperature and left undisturbed. Eventually all the water tasted salty. This action is due to \qquad
A. convection
B. osmosis
C. capillarity
D. diffusion
2. The force required to make an object of mass m, travelling with velocity v, turn in a circle of radius r is \qquad
A. $m v^{2} / r$
B. $m r^{2} / v$
C. mr / v
D. $\mathrm{mv} / \mathrm{r}^{2}$
3. A machine gun with a mass of 5 kg fires a 50 g bullet at a speed of $100 \mathrm{~ms}^{-1}$. The recoil speed of the machine gun is \qquad
A. $0.5 \mathrm{~ms}^{-1}$
B. $1.5 \mathrm{~ms}^{-1}$
C. $1 \mathrm{~ms}^{-1}$
D. $2 \mathrm{~ms}^{-1}$
4. If in a simple pendulum experiment, the length of the inextensible string is increased by a factor of four, its period is increased by a factor of \qquad
A. 4
B. $\pi / 2$
C. $1 / 4$
D. 2
5. In what range of temperature is the expansion of water anomalous?
A. $+208^{\circ} \mathrm{C}$ to $+212^{\circ} \mathrm{C}$
B. $-80^{\circ} \mathrm{C}$ to $-76^{\circ} \mathrm{C}$
C. $0^{\circ} \mathrm{C}$ to $+4^{\circ} \mathrm{C}$
D. $-4^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$
6. Which of the following statements about radioactivity is true?
I. Alpha particle is positively charged
II. Beta particle is negatively charged
III. Gamma rays are neutral
IV. Beta particle has the same mass as Helium atom
V. Gamma ray is charged
A. I, II, III, IV only
B. I, II, III only
C. IV and V only
D. I, II, V only
7. In the study of Physics, temperature and heat are often confused with each other. Which of the following statements correctly defines these two elements?
A. Temperature is a measure of the average kinetic energy of the molecules of a substance
B. Heat is a measure of the total kinetic energy of the molecules in a system
C. Different materials require different amount of heat to cause a given change in temperature
D. All of the above
8.

The effect of closing the key K in the circuit shown in Fig. 1 would be to \qquad
A. increase the current by 0.4 A
B. reduce the current by 0.4 A
C. increase the current by 0.6 A
D. reduce the current by 0.6 A
9. Which of the following statements on the use of X-rays is incorrect? X-rays are used \qquad
A. in hospitals to obtain photographs of tissues and bones in the body
B. for the treatment of malignant growths like cancer cells
C. in detecting fingerprints
D. to reveal hidden flaws in metal casings and welded joint work of art

In the above diagram MN is perpendicular to ON and MP. What is the difference between the moment about N of the force of 20 N applied along MP and its moment about O ?
A. zero
B. 0.2 Nm
C. 0.4 Nm
D. 0.8 Nm
11. Natural radioactivity consist of the emission of \qquad
A. α-particles and β-rays
B. \propto-particles and x-rays
C. γ-rays and x-rays
D. α-particles, β-rays and γ-rays
12. If a source of sound is moving, a stationary listener will hear a sound of different frequency. This is called \qquad
A. doppler effect
B. resonance
C. ultrasound
D. refraction
13. Which of the following can be described as high tension transmission?
A. high resistance and low voltage
B. Iow current and high voltage
C. high current and low voltage
D. high current and low resistance
14. What is the cost of running five 50W lamps and four 100W lamps for 10 hours if electrical energy costs 2 kobo per kWh?
A. $\# 0.65$
B. \#0. 39
C. \#3.90
D. \#0.13
15. The mass of a proton is approximately equal to that of
A. an \propto-particle
B. a β-particle
C. a neutron
D. an electron
16. A transformer has 300 turns of wire in the primary coil and 30 turns in the secondary coil. If the input voltage is 100 volts, the output voltage is \qquad
A. 5 volts
B. 10 volts
C. 15 volts
D. 20 volts
17. A solid weighs 4.8 g in air, 2.8 g in water and 3.2 g in kerosene. The ratio of density of
the solid to that of the kerosene is
\qquad
A. 2
B. $3 / 2$
C. $2 / 3$
D. 3
18. One of the following readings represents the measurement of the length of a metal rod using vernier callipers. Taking the reading accuracy into consideration, the most likely one is \qquad
A. 5.16 cm
B. 5.165 cm
C. 5.0 cm
D. 5.160 cm
19. When a wave sound passes from air into water its \qquad
A. speed and frequency increases but its wavelength remains the same
B. speed and wavelength increase but its frequency remains the same
C. speed decreases
D. speed increases but its frequency and wavelength decreases
20. Which of the circuits illustrated below will give a total resistance of 1Ω ?

21. A convex mirror is used as a driving mirror because \qquad
I. its image is erect
II. it has a large field of view
III. it has a long focal length
A. I and III only
B. I and II only
C. II and III only
D. I, II, and III
E. I only
22.

Two mirrors of the same lengths are arranged as shown in the diagram above. A ray of light NO strikes the system at O and emerges along PQ. The emergent ray has been deviated through
\qquad
A. 220°
B. 200°
C. 210°
D. 180°
23. A magnetic needle is suspended first at the earth's north magnetic pole then at a point on the magnetic equator.

The respective angles between the needle and the horizontal are
\qquad
A. 0° and 0°
B. 60° and 60°
C. 90° and 90°
D. 90° and 0°
24. A hydrometer is an instrument for measuring the
\qquad
A. depth of water in a vessel
B. relative density of a liquid by the method of floatation
C. relative density of a liquid by finding the apparent loss in weight
D. relative humidity of the air
25.

Consider the three forces acting at O and in equilibrium as shown above. Which of the following equations is/are CORRECT?
I. $\quad P_{1} \cos \theta_{1}=P_{1} \cos \theta_{2}$
II. $\quad P_{3}=P_{1} \cos \theta_{1}+P_{2} \cos \theta_{2}$
III. $P_{1} \sin \theta_{1}=P_{2} \sin \theta_{2}$
A. I only
B. II only
C. III only
D. I, II, and III
26. The refractive index of a liquid is 1.5 . if the velocity of light in vacuum is $3.0 \times 10^{8} \mathrm{~ms}^{-1}$, the velocity of light in the liquid is
\qquad
A. $1.5 \times 10^{8} \mathrm{~ms}^{-1}$
B. $2.0 \times 10^{8} \mathrm{~ms}^{-1}$
C. $3.0 \times 10^{8} \mathrm{~ms}^{-1}$
D. $4.5 \times 10^{8} \mathrm{~ms}^{-1}$
27. A ship travelling towards a cliff receives the echo of its whistle after 3.5 seconds. A short while later, it receives the echo
after 2.5 seconds. If the speed of sound in air under the prevailing condition is $250 \mathrm{~ms}^{-1}$, how much closer is the ship to the cliff?
A. 10 m
B. 350 m
C. 175 m
D. 125 m
28. Which of the following statements about defects of vision is/are CORRECT?
I. For a long sighted person, close objects appear blurred
II. For a short sighted person, distant objects appear blurred
III. Short sight is corrected by using a pair of converging lenses
29. Which the following conditions are necessary and sufficient for total internal reflection to take place at the boundary between two optical media?
I. Light is passing from optically denser medium to optically less dense medium
II. Light is passing from optically less dense medium to optically denser medium
III. Angle of incidence is greater
IV. Angle of incidence is lesser
A. I and II only
B. II and III only
C. III and IV only
D. I and III only
30. The linear expansivity of brass is $2 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$. If the volume of a piece of brass is $10 \mathrm{~cm}^{3}$ at $0^{\circ} \mathrm{C}$, what will be its volume at $100^{\circ} \mathrm{C}$?
A. $10.06 \mathrm{~cm}^{3}$
B. $10.04 \mathrm{~cm}^{3}$
C. $10.02 \mathrm{~cm}^{3}$
D. $10.20 \mathrm{~cm}^{3}$
31. The lower and upper fixed points marked on a mercury-inglass thermometer are 210 mm apart. The end of the mercury column in the tube is 49 mm above the lower fixed point in the room. What is the temperature of the temperature of the room in degree Celsius?
A. $55.3^{\circ} \mathrm{C}$
B. $30.43^{\circ} \mathrm{C}$
C. $49.0^{\circ} \mathrm{C}$
D. $16.43^{\circ} \mathrm{C}$
32. Heat is supplied uniformly at the rate of 100 W to $1.0 \times 10-2 \mathrm{~kg}$ of a liquid for 20 seconds. If the temperature of the liquid rises by $5^{\circ} \mathrm{C}$, then the specific heat capacity of the liquid is \qquad
A. $2.0 \times 10^{2} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
B. $2.0 \times 10^{2} \mathrm{~J} \mathrm{~kg}^{-1}$
C. $4.0 \times 10^{4} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
D. $4.0 \times 10^{4} \mathrm{~J} \mathrm{~kg}^{-1}$
33. Two divers G and H are at depths 20 m and 40 m respectively below the water surface in a lake. The pressure on G is P_{1}, while the pressure on H is P_{2}. If the atmospheric pressure is equivalent to $10 \mathrm{~m}^{2}$ of water, then the value of P_{2} / P_{1} is \qquad
A. 0.50
B. 0.60
C. 1.67
D. 2.00
34.

The diagram above represents a block-and-tackle pulley system on which an effort of W Newtons supports a load of 120.0 N . if the efficiency of the machine is 40°, then the value of W is \qquad
A. 28.0 N
B. 48.0 N
C. 288.0 N
D. 50.0 N
35.

In an experiment in which molten naphthalene is allowed to cool, the cooling curve in the diagram above was obtained. The temperature $80^{\circ} \mathrm{C}$ is known as the
A. cooling temperature
B. boiling point
C. melting point
D. vapourization point

In the above diagram, the value of R is \qquad
A. 3Ω
B. 6Ω
C. 4Ω
D. 5Ω
37. Which of the following instruments consumes the highest current?

Instrument	Voltage Rating	Power Rating
A. Electric iron B. Television set	250 V	1 kW
C. Torch light D. Immersion heater	110 V	110 kW

38. In which of the following diagram is the length of the tube equal to one wavelength?

39. Which of the following pairs is not part of electromagnetic spectrum?

I. Radio waves

II. Beta rays
III. Gamma rays
IV. Alpha rays
A. I and II
B. III and IV
C. I and III
D. II and IV
40. A substance has a half of 3 min . After 6 min , the count rate was observed to be 400. What was its count rate at zero time?
A. 1600
B. 1200
C. 200

DISCLAIMER

These are not JAMB expo questions for this year, but past questions of previous years.

You are advised to study these past questions and know their correct answers as well as how the answer to each question was gotten to be well-prepared for your JAMB exam.

Speaking of which,

Would you like to download this JAMB Physics past questions \& answers with step-by-step explanation for each correct answer?

Click on the link below...

